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Extensive Logic De 
Capability in One Convenient System 

pment and Support 

HP's 64000 Logic Development System gets closer to the 
concept of an "electronic bench." Real-time emulation, 
configuration flexibility, and integrated analysis functions 
are some features of this latest version of the 64000 System. 

by Michael W. Davis, John A. Scharrer, and Robert G. Wickliff, Jr. 

URING THE DESIGN of a microprocessor-based sys- tem integration phase is the first time that all parts of the 
tem, a large percentage of the time, typically 30%, is microprocessor system are brought together. This ongoing D spent on debugging, integrating, and optimizing process of refinement and change can be further compli- 

hardware and software. This phase often generates design cated by the use of multiple processors within the same 
implemented quickly for maximum system, and these processors may be from more than one 

equently , software development must vendor. 
totype hardware system, or the hardware The development tooIs used by 
ed with only skeleton software. The sps- ibility, power, and ease of use. The 



projects ranging from a single-person task to a large-team 
software task with a huge data base. The HP 64000 Logic 
Development System provides a comprehensive solution 
for these varying design requirements. Facilities for 
hardware timing analysis, statelsoftware analysis, and 
software performance overview provide debugging and in- 
tegrating tools that improve the designers’ efficiency. These 
analysis tools can be used independently or in conjunction 
with the 64000’s emulation and software development fea- 
tures. As a result of recent architectural enhancements, the 
64000 System can be used in different development envi- 
ronments where the user may work independently, with a 
team, or at a station connected to a larger CPU. Offering all 
of these features and settings while retaining a common 
human interface, the 64000 is a highly integrated logic 
development system with many of the attributes of the 
“electronic bench.”’ 

System Cont Ig urations 
An HP 64000 Logic Development System may be a single 

station configured as an HP 64100 Development Station 
with an HP 64941A Dual Flexible Disc Drive installed, or as 
an HP 64110A Development Station. Either station (Fig. 1) 
can edit, assemble, compile, link, and store program mod- 
ules. A compatible HP printer can be added for hard copy, 
and a compatible HP hard disc memory can be added for 
greater storage capacity and higher performance. The sys- 
tem can be expanded to a cluster of as many as six develop- 
ment stations, each with its own host processor, sharing a 
hard disc and line printer. The standTalone mode can be 
used for smaller software projects or analysis and emula- 
tion. The multistation cluster has the advantage of a shared 
data base and shared peripherals for a team of designers. A 
station having the flexible disc drives can be disconnected 
andused independently at any time. Software is compatible 
between the hard disc and the dual flexible disc drives. 

In the stand-alone configuration, a development station 
can be connected to an HP-IB (IEEE 488) controller and used 
as a typical controlled instrument. In either the stand-alone 
or cluster configuration (Fig. 2), any development station 
can be connected by an RS-232-W.24 interface to a host 
CPU such as an HP 3000 Computer. A communications 
protocol and terminal emulation software permit upload- 
ing and downloading of both source and absolute files 
between the 64000 and a host computer (see box on page 6). 
This gives the 64000 the flexibility to use software tools 
available on the host computer, or to use its own built-in 
software tools, reserving the host for archiving and man- 
agement control. Also, the host computer can send a com- 
mand file to a 64000 Station and cause it to execute those 
commands. 

Each 64100A and 64110A Development Station can be 
configured in many different ways. Adding an HP 64032A 
Memory Expander with 32K words of RAM provides addi- 
tional symbol space for compilers. Both Pascal and C 
cross-compilers are available for a number of micro- 
processors, and a host Pascal compiler is available to exe- 
cute on the 64000 System. The addition of emulator options 
with up to one megabyte of independent memory in 32K, 
64K, or 128K-byte increments gives the user an executing 
and debugging environment and a tool for integrating 
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Flg. 2. The 64ooO Logic Development System can be config- 
ured with any 64100A or 641 1OA Development Station in a 
stand-alone mode with or without a listen-only line printer, and 
can be connected to an HP-IB controller, if desired. The clus- 
ter configuration can be expanded to as many as six stations 
connected to a hard disc memory. Any station, either in a 
cluster or a stand-alone system, can be connected to a host 
CPU via an RS-232-CN.24 interface. Stand-alone stations can 
also interact with each other ora cluster configuration by using 
optional data links. 

hardware and software in theearly phases of development. 
As software modules are completed, they can be mapped 
into the target system’s RAM or stored in programmable 
read-only memories (PROMS) using the HP 64500A PROM 
Programming System. The HP 64302A Logic Analyzer is a 
single-option-card state analyzer which can be added to any 
emulator to monitor address, data, and status of the target 
microprocessor system. For complex debugging and inte- 
gration, a user can add an HP 64620s Logic StatelSoftware 
Analyzer (see article on page 16) with external or internal 
probes. The 646203 is expandable from 20 to 120 channels 
and has a real-time overview of state events for software 
performance evaluation. It also has access to the 64000 data 
base for symbolic debugging. For hardware debugging and 
integration, an HP 646008 Logic Timing Analyzer (see arti- 
cle on page 23) can be used for the monitoring of control, 
status, and logic levels. It is available with 8 or 16 channels. 
Both the 646205 and the 64600s can be installed as separate 
subsystems or in conjunction with other HP analyzers and 
emulators. 



of an emulator. The 

entlv in the two stations. The host processor is a custom uire more than one card. 
oprocessor manufactured by HP. The smaller 
64110A, is rack mountable and transportable, 
d about the laboratorv or used for production 

lexible Disc Drives 
Dual 5Y!-inch flexible disc drives, another development 

and service applications. The larger station, the64100A, is 
better suited for fixed benchtop applications. 

Each station has an option card cage (Fig. 3) to house 
circuitry for the various system options. The 64110A has 
five option card slots and a 250W power supply and the 
64100A has ten option slots and a 400W power supply. The 
development station bus is the interface between the host 
processor and the option cards. Each option card i s  iden- 
tified by the host processor when the station is turned on, 
communicating through 16K words of memory-mapped UO 

d-syntax softkeys are 
HP-IB are controlled 

use the same directed-syntax human 
interface used for the system monitor, editor, and software 
tools.2 This results in ease of use, quick learnihg, and better 
user productivity. The emulation system uses a separate 
emulation bus to communicate between emulation control, 
emulation memory, and analysis cards. The analysis cards 
also share an intermodule bus for measurement control and 

station option, make it possible to operate the 64000 System 
without a hard disc memory. Since the software runs on 
either a hard-disc-based cluster or flexible-disc-based sta- 
tions without change, these new stations are not simply an 
add-on to the 64000 product family. They can be used in a 
cluster system, and when a problem arises in afield applica- 
tion, the software needed to check out the remote system 
can be recorded on flexible discs directly from the shared 
cluster disc. This includes user-developed programs as 
well as HP system software. Thus, the station and the flexi- 
ble discs can be taken to the problem. These new station 
options also lower the entry cost of a 64000 System. The 
minimum configuration is reduced from a station and a 
hard disc to just a station, with the assurance that upgrading 
to a hard disc memory will not cause any disruptions. 
Operation of a flexible-disc-based station is identical to the 
operation of a station within a cluster. All files transport 
from one environment to the other without change. The file 
manager is the same in both environments; only the disc 
driver code is different. Flexible disc interfaces to the file 
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Fig. 3. The host system and the emulated microprocessors have independent buses and can 
run simultaneously. Emulation and analysis can be controlled for coordinated measurements, 
allowing software development concurrent with emulation and analysis. The assortment of nine 
option cards shown above is possible only in the 641OOA Station since the 641 1OA Starion is 

limited to no more than five cards. 
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* HP 64000 Terminal Software 

by Paul D. Bame 

The need for rudimentary communication between the HP 
64000 Logic Development System and other devices was recog- 
nized at the inception of the system. To handle this need, an 
RS-232-CN.24 port was designed into the development station, 
and a simple copy command was implemented in the system 
monitor. When used with the RS-232-CN.24 port, the copy com- 
mand allows the user to transfer files between the 64000 System 
and a remote device. All 64000 file types can be transferred. 
During transfers of text files (source and listing), the upper bit of 
each byte is stripped. For other file types, all eight bits of each 
byte are transferred. The maximum transfer rate is 9600 baud, 
with pacing required for rates greater than 1200 baud. To achieve 
this pacing, an XONNOFF protocol is used. Error detection is 
provided on nontext files; however, no error correction or retrans- 
mission capabilities exist. 

Recently, terminal software has been added to the system 
monitor. It allows a development station to be used as a conversa- 
tional terminal with file transfer capabilities. The requirement was 
for the development station to be able to replace, but not to 
emulate many common terminals on popular mainframes. The 
development station should be able to plug into a normal terminal 
port, allowing the simplest interface between a user's mainframe 
and the 64000 System. 

Because of system considerations, it was desirable to imple- 
ment only asynchronous communication capabilities. With this 
decision made, the next step was to determine the most general 
way to perform the data pacing. This pacing, or flow control, is 
very important for reading data rates above 1200 baud reliably. 
Many mainframes cannot support a sustained input data rate of 
even 300 baud, especially when supporting a heavy timesharing 
load. The two most frequently used protocols were determined to 
be XONHOFF and ENQIACK, and so these two were implemented. 

Protocols 
The XONlXOFF protocol is a start-stop protocol. When a device 

receives an XON character, transmission starts, and when a de- 
vice receives an XOFF character, transmission halts. ENQ/ACK, on 
the other hand, is an interrogative protocol. When adevice wishes 
to transmit, it sends an ENQ character. If the receiving device is 
ready to accept input, it responds with an ACK character. 

Because in the past most terminals could never send data fast 
enough to cause problems, terminal drivers were not always 
written symmetrically. When a mainframe computer sends afile to 
a 64000 Station, the protocol running on the terminal driver pre- 
vents the 64000 Station from being overrun. However, some driv- 
ers do not respond correctly to protocol when the mainframe is the 
receiver. For example, many terminal drivers do not send XON or 
XOFF, or do not respond properly when they receive an ENQ. 
Although HP computers' ENQ/ACK protocol is not sufficient to 
control fast terminals like the 64000, this issue has been ad- 
dressed. HP terminals often include tape cartridge units, which, if 
left uncontrolled, could cause the mainframe to be overrun. An 
additional level of protocol was added to control the tape units. A 
special character is sent to the terminal (tape unit) whenever the 
mainframe is able to accept the next record. This protocol was 
adopted in the 64000s terminal software to prevent a 64000 
Station from overrunning a remote device or mainframe. 

Data Transfer 
Because of the internal characteristics of a 64000 Station, addi- 
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tional requirements are placed upon the protocols that are espe- 
cially important when operating at the higher baud rates. The 
major challenge was coordinating the disc I/O with the RS-232- 
CN.24 I/O during file transfers. During disc data transfers, the 
interrupt system may be unavailable for up to 6 ms. The universal 
asynchronous receiver-transmitter (UART), which is also interrupt 
driven, can buffer up to two characters internally before being 
serviced. This creates a situation where, if more than two charac- 
ters are received during the time that interrupts are disabled, 
some data may be lost. Allowing for other factors that also may 
affect this, and leaving a comfortable safety margin, the 64000s 
terminal mode can run at up to 1200 baud with no protocol. Using 
a protocol, the terminal software can run at up to 9600 baud. 

The protocol must ensure that no more than two characters are 
received during a disc transfer. This is not a problem while using 
the ENQ~ACK protocol. It is sufficient to ensure that all disc trans- 
fers occur after receiving an ENQ character and before replying 
with an ACK. With the XONNOFF protocol, this is not so easy. In 
theory, when a XOFF character is sent, the disc transfer can be 
made and then aXON can be sent. In practice, there is no guaran- 
tee that the remote device will send no more than two characters 
after the 64000 Station sends the XOFF character. Many main- 
frames simply cannot stop transmission that quickly. 

There are two solutions to this problem. First, a simple program 
described in the 64000s terminal software manual can be run on 
the mainframe, solving the problem at the mainframe. Second, a 
recent enhancement to the terminal software provides a configur- 
able delay, forcing the 64000 to wait from 0 to 32,767 ms after 
sending an X O f f  character before going to the disc. 

The protocols available in the 64000's terminal software system 
are general enough so that even if a terminal driver is not compat- 
ible with either protocol, fairly simple mainframe programs can be 
written to bypass the terminal driver and interface with the 6 4 0 0  
System directly. To avoid interference with the mainframe terminal 
driver protocol characters, the controlling characters (XON, XOFF, 
ENQ, and ACK) are user-configurable to any seven-bit ASCII 
characters. This allows programs to be written without knowledge 
of how the terminal drivers work. The 64000s terminal software 
supports transfers of source (text) files and absolute (object code) 
files. Absolute files are transferred in one of three hexadecimal 
formats: MotorolaSI/S9 format, Intel format, and Tektronix format. 
Most mainframe-based cross software produces one of these 
formats, so object code can be transferred to a 64000 System 
where the 64OOO's emulation tools can be used. 

The 64000s terminal software has two major limitations. I 
addition to not supporting synchronous communication, it 
permits transfer of source files and absolute files. 

Paul D. 6ame 
Paul Bame is a software develop- 
ment engineer at HPs Colorado 
Springs facility. He received a BEE 
degree in 1981 from the University 
of Delaware and is a member of the 
IEEE. He lives in Colorado Springs, 
Colorado and his hobbies include 
photography and camping. - 
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drive if necessary. In this way, older software can take full 
advantage of the new hardware without requiring com- 
mand syntax changes or requiring the user to keep track of 
drive numbers. 

activated by a bus command, or the file can be sent over the 
bus for retransmission later. 

The HP-IB interface can be programmed to request ser- 
vice from a controller on the occurrence of any of three 

out further reference to a system disc. 
For a user to take advantage of the fact that all system 

software runs in both cluster and stand-alone modes, some 
means of moving system files has to be provided. Further, 
because of space limitations on flexible discs, only the 
software needed for a particular application is placed on 
flexible discs, leaving more disc space for user files on-line. 

Single applications, such as the state analyzer, require 
many fides for segment overlays. Keeping track of these files 
is a complex task. To free the user of this burden, a special 
file was created to gpoup files under a single application 
name. The flexible disc system generator module refer- 

messages to an operator in a programmed system. Thus, the 
64000 Station can be used within a complex automated test 
system in a manufacturing area or, with adapters, con- 
trolled at a remote site over a phone line. 

Logic AnaiYSls Subsystem 
The Problem of realizing a logic analysis and software 

development system that meets all of the various needs of 
the digital hard-e/software design scenario can best be 
appreciated by l o o & ?  at a model of the design process. As 
dmwn in Fig. 4, the design process spans a range of ac- 

structure. 

HPlB Available In Stand-Alone Mode 

Measurement Dlrplays 

Pie, 4. The digital measurement 
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by Kipper K. Fulghum 

One of the major contributions introduced by the HP 64000 
Logic Development System is the friendly integration of software 
and hardware development tools with software and hardware 
analysis tools. Specifically, microprocessor emulation allows the 
designer to exercise software and hardware in the target system, 
while internal analysis provides unobtrusive testing and debug 
facilities, With the introduction of the 646208 Logic State Analyzer 
and the 646008 Logic Timing Analyzer, the 64000 System now 
has extensive external analysis capabilities as well. By them- 
selves, the state, timing, and existing emulation subsystems are 
powerful development and analysis tools. Intermodule communi- 
cation between these subsystems provides the user with a state- 
of-the-art digital measurement system. 

Intermodule Bus 
lntermodule communication is accomplished via a high-speed, 

ECL low-true intermodule bus (IMB) consisting of five signal lines: 
master enable, delay clock, trigger enable, storage enable, and 
trigger (high-true). All signal lines use one driver, except the 
trigger line, which allows multiple drivers. Any number of receiv- 
ers are allowed on all five lines. With this set of signals, complete 
intermodule control, sequencing, triggering, and store qualifying 
are provided. The capabilities of each analyzer are enhanced by 
the other subsystems on the IMB, and multibus and multiproces- 
sor analysis and emulation can be done with one system. 

Measurement System 
Management of this multiple module analysis/emulation system 

is achieved with a software package labeled meassys  on the 
64000s softkeys. This measurement system is responsible for 
initiating, controlling, monitoring, and concluding any measure- 
ment session in the 64000 environment. It allows multiple 
analysis/emulation modules (up to four) to coexist in a single 
station and communicate with one another over the IMB. 

The measurement system functions as the resource manager of 
the IMB. It enforces the global rulesof the bus, coordinates its use, 
and prevents competition for the bus resources. The specific 
functions any single module can perform on the bus are deter- 
mined by the nature of the module. Each module (state, timing, or 
emulation subsystem) defines what signals it will drive with what 
internal resources, as well as what it will receive. 

The only evidence of the measurement system software visible 
to the user, once analysis/emulation has been requested, IS the 
multiple module monitor. This monitor is entered only if there is 
more than one analysislemulation module in the station. In all 
cases, the configuration and resident portions of the measure- 
ment system software are loaded from disc. If there is only one 
module present, that module is loaded and entered immediately 
by the measurement system software. But if multiple modules are 
identified during configuration, the measurement system monitor 
is entered instead. This monitor provides the means of loading 
software for any of the multiple modules. It displays all of the 
modules in the box, the card-cage slot number of each module’s 
control board, each module’s current status, and a description of 
each module. If any IMB specifications have been made, the 
current IMB configuration, including driverslreceivers of every 
IMB line, is displayed. Lines with possible competition, controllers 
of the rear-panel BNC ports, and emulators on the emulation 
ghost start line (a software-supported line for initiating multiple 
emulation) are also reported. The softkey labels, determined 

dynamically at configuration time, include one for each module in 
the box, with two or more identical modules differentiated by their 
control board’s slot number. Depending on the current run status 
and the current IMB specification, an execute or halt softkey label 
may also be displayed. A softkey allowing output of the display to 
a printer is also shown. Once a module has been selected, en- 
tered, configured, and exited, the measurement system monitor is 
reentered, allowing selection of the next module to be configured. 
At each reentry, the display is updated with the modified IMB 
configuration, and the softkeys are labeled appropriately. 

Slot Array Utilities 
The measurement system maintains three major data struc- 

tures. Each data structure has its own set of utilities for creating 
and interrogating the structure for pertinent information. The first 
structure, created by a card-cage poll during initial configuration 
of the measurement system, is called the slot array, an array of 
records indexed by slot number. Each record contains informa- 
tion about the board in a particular slot. The slot array utilities allow 
all analysis/emulation modules and the measurement system to 
access this information, which includes the board’s select code, 
type, and module name. If the board is a control board, two other 
items are also maintained: an assigned module number and the 
RAM address of that module’s relocated baby module. 

A baby module is a small (maximum of 512 bytes), relocatable 
hardware-dependent module capable of basic identification, ini- 
tialization, and control of its respective hardware set. This baby 
module, one per analyzerletnulator, is loaded by the measure- 
ment system and relocated to a more convenient RAM location 
during Configuration. It is used by the measurement system and 
its parent module to start, monitor, and halt related hardware. The 
combined capabilities of all relocated baby modules allow the 
measurement system to control all the hardware sets in the station 
without having any of the parent analysislemulation software 
packages resident in memory. This is a necessary condition since 
only one parent module can remain in memory at any one time, 
and none is available when the measurement system monitor is 
loaded. 

Functlon Array Utilities 
The second major data structure supported by the measure- 

ment system software is the function array. It maintains the current 
configuration of the IMB (all drivers and receivers of every IMB 
line), the rear-panel BNC ports, and the multiple emulation ghost 
line. When a module requests permission to drive or receive a 
particular signal through the function array utilities, this structure 
is updated to reflect the request and the caller is informed of any 
possible conflict with another module the request may have 
created. Only minimal data is kept in this structure. If more infor- 
mation about a certain module is required, the slot array utilities 
can be accessed to provide the necessary data. Given this 
cross-referencing of structures, each module can not only find out 
what bus conflicts there are, but also who is contending for the 
bus. This is important since a measurement cannot be allowed 
until all conflicts are resolved. 

Run-lime Stack 
The final crucial data structure used by the measurement sys- 

tem software is the run-time stack. This stack is a typical LIFO 
stack: last-in, first-out. It keeps track of the required starting order 
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hat sets the context of the measurement, that is, the driver of 
ble, is up and running. Also, emulation modules should 

analysis modules; otherwise, the analyzers may miss 
equence or trigger conditions. Therefore, items are 
to the stack as follows: all emulators on the emulation 
the driver of master enable, all drivers of the other 

d finally all receivers. Thus, when the items are popped 

master enable, then all emulators, ensuring that the correct mea- 
surement context is set before the measurement begins. 

Upon exiting the measurement system, all data structures and 
current baby modules are saved in one configuration file on the 
cluster disc or local flexible disc, depending on which is being 
used as the system disc. This file, unique to each station in a 
multistation system, contains all necessary information required 
by the measurement system software to reinitiate a measurement 
session. Thus, if all individual modules are exited cleanly, that is, if 

1 individual configurations are completed, the user can end a mea- 

previous measurement session can be made via a continue r e  
quest, and all measurement configurations and run status will be 
unchanged. This provides the userwith an extremely friendly path 
from analysis todevelopment tools and back again without having 
to reconfigure the instrument. 

Kipper K. Fulghum 
Kip Fulghum came to HP in 1979 
after completing the work for a BS 
degree in computer science at Col- 
orado State University. He worked 
on the flexible disc operating sys- 
tem for the 641 10A Station and the  
IMB software for the 64000 System. 

tion areas. For a microprocessor-based system, the sti 
for these measurements is the emulation capability 
logic development system. Despite these different ne 
only one system is designed, and sometimes a single 
signer must use most, or all of the disciplines shown. 

setup and hold times of data in relation to that clock. In 
general, if the system is to be sampled reliably, the setup 
time should be a minor portion of a clock cycle and the hold 
time should be zero or negative. This is accomplished in the 
64635A Data Probes or the 64650A Preprocessor by a cus- 
tom bipolar delay generator. 

Performance and State Analysis 
The performance portion of the 64620s Logic Statel 

Software Analyzer subsystem is optimized to accumulate 
range data on address events and time events, in real time, 
in a large storage memory for postmeasurement processing. 
This gives the analyzer an overview capability that mea- 
sures the performance of the system software by indicating 
the relative time spent doing tasks or the times spent doing 
a specific task. The data is displayed in histogram, graph, or 
list form. The input circuitry for the performance analyzer 
is identical to that of the state analyzer system. The perfor- 
mance analyzer has its own 4K-byte storage memory. A 
large memory is necessary since large amounts of data are 
required to give a meaningful overview picture. The per- 
formance analyzer and state analyzer share the same board 
set, but act as independent analyzers interrelated by data 
qualification and trigger mechanisms. 

The state analyzer is optimized for qualifying measure- 
ments (trigger) and data (store qualify). Its multiple se- 
quence detectors are invaluable in untangling the complex 
algorithms characteristic of software design. To achieve 
these capabilities, the state analyzer has many decision 
points within every clock period of the system under test. 
This decision-making time limits the maximum incoming 
clockrate that the analyzer can accept, but through the use 
of emitter-coupled logic and custom bipolar logic chips, the 
maximum clock speed of the 646208 Analyzer exceeds the 
needs of most processors. In a state analyzer, and in particu- 
lar the 646208, incoming data is highly qualified, and there 
fore having a large memory for storing states is not critical. 
Also, in state analysis, sampling is done by the clock of the 
system under test and the important parameters are the 

liming Analyzer 
Timing analysis has quite a different set of requirements. 

Incoming data is sampled by an internal asynchronous 
clock and all incoming data is ssmpled. Therefore, a large 
storage memory and an effective postmeasurement display 
system are important. Also, in timing, data is observed for 
timing relationships and race conditions, and therefore the 
timing resolution should exceed the minimum timing mar- 
gins required by the system under test. The resulting con- 
straint is that sample rate and input line skew are the impor- 
tant parameters for timing analyzer inputs. Setup time and 
hold time are not relevant in the timing analyzer, other than 
that their sum is usually an indicator of channel time skew. 
The delay lines present in a state analyzer would actually 
increase skew and deteriorate resolution if identical inputs 
were used for both state and timing. 

Parametric voltage information is more important at this 
end of the design continuum, and the 646003 Timing 
Analyzer can capture and display three levels of voltage 
information. In this dual-threshold mode, a low, middle, or 
high logic level can be displayed. The two thresholds are 
usually set to a particular logic family's low and high input 
specifications (see Fig. 3 on page 26). 

Effective triggering is also important in a timing analyzer. 
The 646008 can do parametric triggering such as on event 
times, event transitions, and glitches. Transitions are the 
dynamic entry to or departure from a specified pattern, A 
glitch on a data line is two or more transitions that occur 
between internal sample clocks. Using the dual-threshold 
measurement capability of the 64600s Timing Analyzer as 
an example, a typical trigger specification might read trigger 
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on greater than 50 usec of CLOCK=Middle. Since the timing 
analyzer does not capture data synchronously with the 
clock of the system under test, it cannot do an effective job 
of triggering on synchronous data. It must rely on a state 
analyzer for this type of trigger capability. 

State, Tlmlng, and Software Development Together 
As we have seen, the requirements for hardware and 

instrument characteristics differ quite a bit between state 
and timing analyzers. Thus, trying to make the same mod- 
ule do both tasks is not practical. The 64000 approach is to 
design independent modules, each optimized for a specific 
set of instrumentation tasks. However, because the state, 
timing, and emulation modules are controlling and measur- 
ing the same system, connections and synergism must exist 
among these modules. 

There are three primary areas of interaction. The first is 
the real-time interaction of emulation, state analysis, and 
timing analysis. Since, in general, any analyzer takes only a 
relatively small snapshot of a system’s performance, defin- 
ing windows (specified events in time or address space) and 
indexing across module boundaries is a necessity.3 In the 
64000 System, this is done by the high-speed intermodule 
bus (IMB) which allows interaction of triggering, trigger 
arming, storing, store arming, system starting, and win- 
dowing of the functions of one module by another module. 

The second area of module interaction is data base shar- 
ing between the software development system and the state 
analyzer. The symbols generated by the linker, assembler, 
and compiler are available to the state analyzer for the 
purpose of displaying symbols for addresses and also as 
addresses in operands. They are also used in setting up 
format and trigger specifications by appearing as softkey 
labels when appropriate. 

The third area of interaction is related to the operator and 
is concerned with the commonality of instrument setup and 
syntax. The directed-syntax softkeys and grammar conven- 
tions of the 64000 System provided an excellent opportun- 
ity to achieve a setup and display synergism between the 
state and timing analyzers and emulation modules that 
allows commonality in operating all three types of instru- 
ments. A new software module has been added to the 
operating system to coordinate the interaction and start-up 
of the individual modules. This module also indicates the 
status of the modules during execution (see box on page 8). 

Journal, Vol. 31, no. 10, October 1980. 
3. J.A. Schaner, R.G. Wickliff, Jr., and W.D. Martin, “Interactive 
Logic State and Timing Analyses for Tracking Down Problems in 
Digid System,” Hewlett-Packard Journal, Vol. 29, no. 6, February 
1978. 
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number of enviromwnts. ally the 64110A is set on a 
bench on its bottom feet or on the front tilt bail. Tilting 
on the bail positions the d for typing. If no table or 
bench is conveniently available, the 64110A has legs which 
pull out for stable floor standing operation, The 64110A 
also may be rack mounted using standard rack hardware. 

The 64110A's keyboard adjusts to any angle and locks 
with the flip of a lever. Should the instrument fall or exces- 
sive force be applied to the locking mechanism while the 
keyboard is latched, the keyboard will slip and pivot with- 

from the option cards directly into the pouch and then to the 

Engineering Workstat 
by Jeffrey H. Smith, Carlton E. Glitzke, and Alan J. 

10A and upgraded HP 64100A De- 

RatheT than creating completely new stations, the task was 
to design a smaller, portable mainframe, the 64110A, while 

and associated probes. 
The smaller of the new stations is the transportable 

64110A Development Station (see cover and Fig. 1). The 
mechanical design goals of the 64110A were to provide a 
transportable and self-contained mainframe compatible 
with the 64000 option cards. For an instrument to be trans- 
portable it must be compact, durable and easy to carry and 
move around. Some features of the 64110A are: 

h-diagonal CRT, a full ASCII keyboard with 
and cursor control keys, and two flexible disc 

ives contained in the front of a 7-inch-high, standard 
HP System II frame 
A new thicker, so€ter, more comfortable, side handle 
(compatible with any 20-inch-long HP System II cabinet) 

rn A pivoting, locking keyboard for front-panel protection 
and compactness 
Injected-molded exterior parts of polycarbonate (strong, 
durable, W stable and do not require painting) 
Adaptability to existing HP carts and folding airline lug- 
gage dollies 
Exposed edges and corners contoured where they might 
come in contact with the person carrying the instrument 
Feet on both sides, rear and bottom SO the instrument can 
be set down or stored in any logical position 
Accepts any of the 64000 System options except the 
PROM programmer, which drops only into an opening 
on the right side of the larger 64100A Station's keyboard, 
and the earlier tape cartridge drive, which is not needed 
because dual flexible disc drives are standard for the 
64110A 
Space for five option cards and a 250W power supply to 
power the mainframe and the cards. 
The 64110A Development Station is operable in  a 

Fig. 1. The 641 10A Development Station is designed for easy 
transportability and can be hand carried or moved on a typical 
luggage dolly. The 6411OA can be set on a bench, rack 
mounted, or set on the floor steadied by its rear feet as shown. 
The keyboard can be adjusted to a convenient work position 
andan optional pouch can be mountedon top of the 641 1OA to 
carry cables, connectors, and pods. 
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Flg. 2. Simplified block diagram of 
the flexible disc drive system. 

system under test. Therefore, the probes may be discon- 
nected from the system under test and stored in the pouch 
without disconnecting them from the 64110A. 

Flexible Disc Drives 
Both stations use the new 5Y4-inch dual flexible disc 

drive system for backup and local mass storage. Compared 
to the earlier DC-100 tape cartridge system, this system 
reduces the average time required to backup a 20K-byte file 
from 51 seconds to 24 seconds. A ZOK-byte file can be 
overlayed in RAM in 2.6 seconds. The use of two drives 
increases the on-line local mass storage to 540K bytes and 
makes it easier to duplicate discs for backup. Each flexible 
disc allocates 1% tracks for a directory, 62?h tracks for data, 
4 tracks for operating system storage, and 2 tracks as spares, 
which are used in case any bad tracks are found during 
formatting. The block diagram of the flexible disc system is 
shown in Fig. 2. 

Control of seek, read and write operations, and the con- 
version between an 6-bit parallel format and the serial data 
stream used to store data on the flexible disc are handled by 
a 1791 integrated circuit. Two additional registers are used 
to control the drive motors, select the active drive and side, 
and monitor drive status. 

Each drive is connected by its own bus to the controller, 
keeping each drive selected at all times. This permits the 
controller to monitor its status continuously. As an example 
of a status check, the controller is signaled whenever the 
user changes the disc in a drive; otherwise, it would be 
necessary to read the directory to determine if the proper 
disc is in place before each disc access. Because each drive 
contains a write-protect switch that rides against the jacket 
of the disc as it is inserted or removed from the drive, the 
status monitor can detect a closed-to-open transition of this 
switch and set an internal IV~EDIA-CHANGE bit. The W I A -  
CHANGE bit is also used to recover from some error condi- 
tions. A READY status signal is generated by retriggering a 
monostable multivibrator from the disc drive’s index pulse 
detector output. This allows the controller to detect that the 
drive contains a disc and that the disc is rotating before 
attempting a read or a write. Separate buses also allow both 
drive motors to run simultaneously. This improves the 
speed of disc copy operations since discs can be copied 
track by track without waiting for the drive motors to re- 
start each time. 

DMA (direct memory access) is used to transfer all data 
directly between the disc drives and the station’s RAM. 

This is a lower-cost solution than using a sector buffer 
within the controller, and permits higher throughput be- 
cause no processor intervention is required during the 
transfer of up to one entire track of data. Formatting of a new 
disc becomes particularly easy since an image of the track, 
including interrecord gaps, is merely placed in RAM and 
then transferred directly to the disc. 

A ROM-driven state machine handles all communication 
between the host processor, RAM, and the 1791 disc con- 
troller. This state machine is a necessary link because the 
host processor and RAM use 16-bit words while the 1791 
processes data in 8-bit bytes. All commands are passed 
between the host processor and the 1791 without delay. 

The soft error rate of the disc system is reduced by using a 
phase-locked loop (PLL) data separator to recover the clock 
from the serial data stream storedan the disc. The natural 
frequency of the feedback loop is much lower than the 
250-kHz bit rate of the serial data stream. This provides a 
“memory” that minimizes the effect of a bit whose position 
is slightly misplaced. The natural frequency used is 15.9 
kHz, which was determined empirically. If the frequency is 
too high, the PLL will have insufficient memory; if the 
frequency is too low, the loop will have an excessively long 
lockup time. 

Power Supplies 
The new subsystem options for the 64000 System are 

faster and more complex than the emulation systems and 
logic analyzer modules available earlier. These new options 
require a correspondingly larger amount of power from the 
mainframe. The greater number of option choices also in- 
creases the power requirements, since a mainframe can 
have several hardware subsystems in place at one time. To 
handle this power demand and further increases expected 
in the future, the new 64100A mainframe power supply is 
designed to deliver 5V at 45A (primarily for TTL and CMOS 
circuits), -5.2v at 25A (primarily for ECL circuits) and 
-3.25v at 30A (for HP-designed bipolar LSI circuits). The 
power supply in the transportable 64110A mainframe de- 
livers 5V at 30A, -5.2V at 20A, and -3.25V at 20A. It was 
necessary to modify the fans and internal ducting of the 
mainframes to ensure that the air temperature rise is no 
greater than 15°C above ambient at any point on the option 
boards. 

Both mainframes are powered by switching-mode power 
supplies operating directly from the ac line. The design is 
conventional except that two LC filter sections are used in 
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filter needs less total inductance, and therefore occupies 
less volume than a singlesection filter providing the same 
attenuation. The output ripple voltage of each high-currmt 
supply is about 20 mV, peak-to-peak. The supplies are 
cooled by fans located between the power supply and the 
card cage. These fans draw outside air through the card cage 
and exhavst it through the power supply. This arrangement 
ensures that the card-cage cards are cooled before the more 
heat-tolerant components in the power supplies. High- 
dissipation components within the supplies, such as high- 
current rectifier diodes, are located on finned heat dis- 
sipators placed in the high-velocity airstream exiting from 

more LEDs are separately powered by the 5V, -5.2V, 
-3.25V, 12V, and -12V supplies. If one of these voltages is 
low or missing, the corresponding LED will glow dimly or 
be off, 

CompatiMllty of Subsystems 
The CRT display, high-power switching power supply, 

and two flexible disc drives in each mainframe are not the 
most hospitable of neighbors, particularly when placed in 
very close proximity as in the case of the 64110A Station. 
One major problem was magnetic interference from the 
display deflection yoke and flyback transformer, which 

the fans. The dissipators also help mask some of the acous- 
tic noise genmeted by the fan blades. Both supplies contain 
thermal shutdown switches to help protect them from the 
effects of excessively high temperatures should the air 
openings become blocked or the fans fail. 

The 64100A’s supply is partitioned into four modules. 
Three of the modules can be changed without removing the 

ly from the 64100A Station. The fourth module 
is isolated behind a 1.6-mm-t aluminum deck in the 
battom of the supply. This subassembly has the power line 
input circuit, line rectifiers, storage capacitors, control 
power transformer, and E M  attenuating elements. The 
connector from this board to the remainder of the supply 
passes through the isolating deck and handles only the dc 
rail (rectified power line) to the switching supplies and the 
12V control power supply. The metal deck prevents the 
intense high-frequency electric and magnetic fields gener 
ated by the switching circuitry from radiating around the 
EMI attenuating elements and reducing their effectiveness. 

The high-current (greater than 5A) circuitry is contained 
on one printed circuit board to reduce the number of high- 
current interconnections. This board is made with extra 
heavy copper lamination to minimize power losses. Effi- 
ciency of the supply is good (73% at full power). To deliver 
400 watts to the host system and option cards, about 550 
watts of power is drawn from the power mains, including 
35 watts for‘the system cooling fans. 

Safety is a very important issue in power supply design, 
especially in one of this current and power capability. Insu- 
lation and spacings are designed to IEC 380 standards and 
flame-retardant materials are used throughout. Voltage 
sources are equipped with individual internal load- 
impedance-sensing circuits to minimize the current and 
power delivered under fault conditions. Thus, the short- 
circuit current is much less than the rated current for the 

Monitor circuits independent of the regulator loops make 
sure that supply voltages stay within safe limits and follow 
a proper power-up sequence. These circuits prevent dam- 
age to the modules in the system card cage if the power 
supply malfunctions. Independent shutdown loops and 
crowbar circuits activated by these monitors will burn open 
the main fuse in the power supply to prevent overvoltage 
conditions. In addition, shutdown can be initiated by either 
an overtemperature sensor, an interlock (to detect a missing 
or unplugged power supply printed circuit card) or a pri- 
mary overcurrent detector. Six LEDs indicate which of the 

supply. 

coupled into the adjacent disc &ives and caused soft read 
errors. Another problem was magnetic interference from 
the transformers and inductors within the power supply 
coupling into the display and causing a beat with the scan 
rate of the display. This beat would appear as a swimming 
motion of the displayed characters. 

In both cases, direct measurement of the interference was 
extremely difficult. The design goal for the disc drive sys- 
tem was that installation in the station not seriously d e  
grade the drive’s specified soft error rate of no more than 
one error in every lo9 bits read. Because the drive takes 
over 100 minutes to read 10’ bits, it was very time consum- 
ing to verify the effectiveness of prototype changes. The 
CRT display presented different problems. When the dis- 
play is operating, its yoke generates large magnetic fields in 
the vicinity of the CRT, making it difficult to measure any 
small interfering fields created by the power supply. Yet, a 
very small amount of display movement (less than Y4 dot 
width) caused by these small fields is visually apparent to a 
user. 

To solve these problems, a directional magnetic probe 
was constructed by mounting a small, electrostatically 
shielded, multiturn coil at the end of a plastic rod. This 
probe was used to determine the sources of magnetic fields 
and to measure their relative intensities. A low-frequency 
spectrum analyzer was used to monitor places where the 
effects of the interference appeared in the form of electrical 
signals such as the output of the magnetic probe, power 
supply voltages, and signals in the disc drive read 
amplifiers. This made it possible to separate different 
sources of interference (by frequency) and to make quantita- 
tive measurements of their levels quickly so that the effects 
of any design changes could be measured. A technique that 
worked particularly well in the case of the disc drives was to 
reduce their timing margin artifically by skewing the read 
clock relative to the raw read data. This increased their 
sensitivity to interference so that any small changes in 
interference levels produced quickly recognizable changes 
in the error rate. 

As a result of this testing, some of the internal sheet-metal 
pieces were redesigned to improve their shielding effec- 
tiveness. At the frequencies involved (20 kHz for the 
switching supply and 24.3 kHz for the display), the 1.6- 
mm-thick aluminum used for the internal sheet metal has a 
thickness of several electromagnetic skin depths and can be 
an effective magnetic shield. This avoids the cost or weight 
penalties associated with using high-permeability shield- 

MARCH 1983 HEW--PACKARD JOURNAL 13 

.HPARCHIVE.COM 



ing materials. 

Safety and Electromagnetic interference 
Another aspect of compatibility is the interaction of an 

instrument with its surroundings. Considerations of safety 
and electromagnetic interference revolve around a number 
of standards, which have been written both within the 
U.S.A. and abroad. These regulations are also covered by 
Hewlett-Packard design standards and required some rede- 
sign and retesting. Compliance was made more difficult by 
the increased power supply capability within the main- 
frames, which increased their noise-generating potential. 
The addition of state and timing analysis modules to the 
mainframes also made compliance more difficult because 
of their internal high-speed circuitry and because theii 
probe cables can act as transmitting antennas, thus increas- 
ing radiated interference. To cover this situation, com- 
pliance testing was performed for a typical user setup, with 
the cables hanging over the edge of a table. 

Both of the new mainframes comply with the following 
regulations: IEC 348, ANSI C39.5, CSA Bulletin 556B, VDE 
0871 and VDE 0875 Level B, and FCC part 15, subpart J, 
Level A. FTZ RFI licensing is in process. The option cards 
are designed to meet VDE Level A except when probing 
open circuitry. In that situation, emissions will be a func- 
tion of the target system. 

Self-lest 
To give the user confidence in the operation of the in- 

strument and aid in fault diagnosis, approximately one-half 
of the JoK-byte internal ROM is devoted to the storage of 
self-test routines. When the instrument is first powered on, 
it computes and verifies a checksum for each ROM. The 
checksum for each ROM is unique. Thus, the routine can 
detect ROMs in the wrong socket as well as defective ROMs. 
RAM is tested by writing the value of a software counter to 
each location in sequence, then verifying that the stored 
value is correct. If so, the program waits one second to check 
the refresh circuitry and verifies the value again. If this test 
is passed, the program complements the count and repeats 
the sequence. If an error is found, the name of the failed 
component is displayed on the CRT. I€ the failure is so 
serious that the display cannot function, the CPU automati- 
cally enters a software loop that provides the proper 
stimulus for signature analysis. 

Extensive self-test routines can be selected by means of a 
switch on the rear panel or by pressing the CNTL and RESET 
keys. The menu for these routines is shown in Fig. 3. The 
flexible disc self-test routine verifies the ability of each 
drive to perform seek, read, and write operations. The write 
test is performed on the spare track so that no user-entered 
data is destroyed. If the spare track is in use, a message is 
displayed and the write test is not performed. A separate 
menu allows access to a disc diagnostic program. This 
program enables service personnel to test the ability of the 
drive to read or write any track. It also allows them to 
perform extended error rate tests. 

Serviceability 
Two serviceability goals for the new mainframes were to 

reduce the mean time to repair (MTTR) to less than two 

* 
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Fig. 3. Display on 641OOA Development Station showingper- 
formance verification (self-test) menu. Flexible disc test line is 
shown in inverse video. 

hours and to troubleshoot and repair all boards to the com- 
ponent level, thus avoiding the inventory cost of stocking 
replacement boards in service centers. It is anticipated by 
our service group that component-level service should re- 
duce repair costs to customers by 42% and decrease the time 
a failed instrument is out of service. The primary means 
used to achieve these goals is signature analysis (SA).2 To 
implement SA, latches are designed into the mainframe 
circuitry to provide the start and stop pulses that define the 
SA window. Jumpers placed in several positions on the 
printed circuit boards allow hardware and software feed- 
back loops to be broken so that signatures can be obtained 
regardless of the possible malfunctioning of other parts of 
the instrument. SA tables in the service manuals for each 
instrument contain over 500 individual signatures which, 
in most cases, permit troubleshooting to the component 
level. 

Because of its compactness, it was anticipated that access 
for service could be difficult with the smaller transportable 
641 10A mainframe, so particular attention was given to this 
potential problem during its design. Its power supply mod- 
ule can be unplugged after removing only nine screws. 
Almost all of itsxircuitry is contained on three plug-in 
printed circuit boards. The boards in the card cage can be 
placed on extender boards for service. All of the remaining 
boards that contain active circuitry are designed to swing 
out to permit access to their components. 

Reliabllity Testing 
Another, more effective way to reduce the service re- 

quirements of an instrument is to reduce the probability 
that it will fail. Toward this end, both mainframes under- 
went extensive reliability testing during their pilot runs 
and first production runs. The goal of this early testing was 
to find failures and to make changes in the design, the 
production process, or the vendor parts to eliminate their 
causes. A lack of failures, although supportive to the egos of 
the design team, produces no useful data, so attempts were 
made to increase the amount of data gathered per unit hour 
of testing. Table I shows the results of an experiment con- 
ducted during the 64110A pilot run where the instruments 
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Test %olTotal %ofTotal Test 
Test Time Failures Hours 

Heat Box 43% 10% 13,357 

Shake Table 24% 39% 7,247 

Thermal Cycle 5% 39% 1,510 

Drive Test 2%% 12% 8,786 

Total: 100% 100% 30,900 

were subjected to three different types of reliability tests. 
Heat box is a classical heat run at 35°C to 40”C, to simulate 
accelerated usage. Shake table is a heat run during which 
the instruments are also subjected to vibration at 0.8g, 20 
Hz, for 10 minutes every hour. Thermal cycle is a strife test3 
that cycles the instruments between -20OC and 65°C at a 
rate of 1”Clminute with a 30-minute dwell at the extremes. 
The power is cycled on and off three times at each extreme. 
Drive test is a separate disc drive test conducted at room 
temperature. The thermal cycle test was, by far, the most 
effective since it produced 39% of the total failures while 
consuming only 5% of the total test time. The failures gen- 
erated during the thermal cycle test correlate with failures 
seen in field failure histories of similar instruments. This 
indicates that temperature cycling accelerates failures that 
would have occurred normally rather than generating new 
failures caused by excessive thermal stress. 
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A Modular Analyzer for Software 
Analysis in the 64000 System 
by Richard A. Nygaard, Jr., Fredrick J. Palmer, Bryce S. Goodwin, Jr., Stan W. Bowlin, 
and Steven R. Williams 

HE LAST TEN YEARS have produced a revolution 
in microprocessor technology. In 1972, the first- T generation 8008 microprocessor was a novel element 

in product design. Program sizes were in the hundreds or 
perhaps thousands of bytes. Machine-code programming 
was not uncommon and assembly language was used for 
larger programs. In 1982, the third-generation 68000 and 
similar processors entered into their second upgrade and 
program lengths reached a megabyte and beyond. High- 
level languages and advanced data structure techniques are 
used extensively. Most programmers are no longer 
hardware designers, but rather are software engineers and 
computer scientists, The expense of software development 
is exceeding that of the hardware. This adds up to a neces- 
sary revolution in the techniques used to design 
microprocessor-based products. 

Each generation of processors has been supplied with its 
own generation of development and analysis tools. These 
have progressed from Hp’s 1601A Logic State Analyzer 

Fig. 1. HP Model 646208 Logic Statelsoftware Analyzer adds 
real-time, transparent software analysis to the HP64000 Logic 
Development System. The analyzer can be configured with 20 
to 120 input channels. General-purpose and dedicated inter- 
faces simplify connection to target systems. The 64620s can 
be incorporated in a 64000 System cluster station, or in a 
641OOA or 641 1OA Development Station with a flexible disc 
drive as a stand-alone software analyzer. 

plug-in for an oscilloscope, through the HP 1611A and 
l6lOA Logic State Analyzers, to the current HP 646208 
Logic StatelSohare Analyzer (Fig. 1). The change in em- 
phasis from hardware to software design can be seen in 
these products, as well as in their capabilities. The 1601A 
was controlled by toggle switches, contained a comparative 
handful of ICs, and displayed its measurements in binary 
notation. It served random logic and discrete state machine 
design. The 1611A and the 1610A are microprocessor- 
based designs with menu control and display in 
mnemonics and selectable number bases, respectively. 
Their measurements are aimed at the needs of assembly 
language debugging. The 646208 is a microprocessor- 
based design with directed-syntax softkey commands. Its 
displays include program symbols as well as mnemonics 
and numerical data. It assists programmers in high-level 
languages with a full feature set that includes software 
performance measurements and extensive program tracing. 

The wide variety of measurement situations to which the 
646208 is directed requires a high degree of adaptability. 
The many types of target systems to be monitored require a 
probing system that can interface to the mechanical, elec- 
trical and functional characteristics of these systems. Also, 
the user interface to the analyzer needs to be configurable to 
the different ways in which information is represented. For 
these reasons, it was considered very important to make the 
646208 as user-definable and configurable as possible. 

Additional design constraints for the 646208 Logic 
Statelsoftware Analyzer were generated by requiring that it 
be a module in the 64000 System. The software design had 
similar constraints, because it also has to operate within the 
environment provided by the 64000’s operating system. 

Modular Feature Set for Tracing Modular Software 
An extensive feature set can be both a blessing and a 

curse, a blessing in that almost any measurement problem 
can be attacked, and a curse in that the choices are so many 
as to obscure the necessary ones. Today’s software analysis 
problems require a very capable analyzer. Problems intro- 
duced by modular, high-level software are at a higher level 
than many of those encountered in assembly language pro- 
gramming. Traces of variables, tasks, and data structures 
are required. 

A high-level language allows the designer to attack the 
problem in pieces, producing modular building blocks to 
construct the program and complete the task at hand. Each 
block performs a separate function, which is relatively in- 
dependent of the way other blocks behave. The 64620s at- 
tacks software analysis problems in the same way. The three 
functions required to do a useful software trace are trigger 
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(WHEN is program activity significant), atorage (WHAT ac- 
tivity is important), and nt (HOW MUCH activity oc- 

surement functions. Fig. 2 shows the hierarchy of these 
functional building blocks within the 646208. Measure- 
ments can be built from any combination of blocks to solve 
particular needs. Furthermore, measurements can be re- 
fined easily by adding or modifying blocks to control the 
capture of data better, since each is displayed individually 
within the trace specification. Blocks not defined by the 
user are defaulted to an “always” condition. Therefore, if no 
blocks are specified, the analyzer captures the bus cycles 
seen after execution is begun. Specifying only the trigger 
condition is equivalent to a breakpoint-only analyzer. 
A “trace triggem” analyz oduced if only storage qual- 
ification is used. Runni simultaneously produces a 
powerful measurement, but one that still does not take full 
advantage of the analyzer‘s capabilities. 

c d  betwien important activities). The 846203 provides 
sjmmetrical Capabilities for each of these functions. 

stare, Bpd count are 
hasfzed the trigger 

OS State Analyzer, 

tions. This approach is usually 
language programs where eac 

y significant, However, -the bus cycles exe- 
level program are rarely of interest because 
e automatically generated by the compiler. 

Instead, the relatively infrequent accesses to variables and 
procedure calls are of primary interest to the programmer. 
In this environment, storage qualification takes on a role at 
least as great as the bigger function. And, since most bus 
cycles are now ignored by the analyzer, the importance of 
counting the time between the few that are stored also 
increases. A time count imm shows the overhead 
involved in modffying data s s and the delays as- 
sociated with each procedure or task. By providing equal 
capability for each function, the user can emphasize the 
fundions(s) most needed for the measurement at hand. 

Another key aspect of the building block approach to 
staftware analysis is a windowing capability. A window 

for an event to enable the 
followed by a search for 
nction (close the window). 

Programs contain varying levels of con 
program to the utility or driver functi 
which a variable is changed i s  just as i 
that it was changed. Windowing is th 
the analyzer when the program reaches a context of interest. 

Windowing can be applied to trigger, store, or count. The 
same window can control all three or a different window 
can be d e h e d  for each. Each 
one or more trace fun 

tensive control, but it is available when required. 
The highest level of control in the analyzer comesponds 

to the highest level of control over a program-the 
scheduler. In a multitasking environment, programs are 
rarely run to completion. Instead, each task may be active 
for only a few milliseconds before deferring to another. The 
programmer often is not concerned with these details, pre- 
ferring to view the program as executing continuously. The 
analyzer should also support this view. The 64620s can be 
told to suspend its operations whenever the program is 
suspended by the scheduler and to resume them when the 
program is resumed. This capability is called the master 
enable function; it freezes the rest of the analyzer including 
the trigger, store, and count functions. Program swapping is 
transparent to the analyzer and the program when the mas- 
ter enable function is in use. 

Thus, the 64620s State Analyzer can extensively analyze 
software execution in real time without disturbing program 

Overview for Performance Measurement 
Tracing program execution is a traditional task for logic 

analyzers. A newer task, and one growing in significance, is 
monitoring program activity to provide data about the pro- 
gram’s performance. Some of the features of the 646205, 
particularly the time count, provide performance informa- 
tion. However, these features are optimized for tracing, not 
for overview. The 646208 Logic Statelsoftware Analyzer 
addresses the need for perform surements with a 
second overview analyzer that is separate from the tradi- 
tional trace analyzer and capable of operating simultane- 
ously with it. 

The overview analyzer provides an overview of system 
activity. This analyzer captures events, not the bus cycles 
captured by the trace analyzer. This means system activity 
is‘analyzed at the level of procedures and tasks, not at the 
instruction level. Then too, the information is displayed 
most often in histograms an 

Three different overview 
each with a different type of 

containing a specific routine or collection of utilities. Or, an 
event can represent the entry point to a procedure or the 
area occupied by a data structure. Once the events of in- 
terest are defined, the overview analyzer monitors the sys- 

Data from system under test 

I 
Master Enable 

WHEN WHAT HOW MUCH 
to trace to trace activity occurred 

The Software Trace Measurement 

execution in any way. The measurement specification 
complexity has been reduced by modularizing the mea 

Fig. 2. Diagram showing the hierarchy of the measurement 
function modules in the 64620s. 
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The comparison between an input value and a range of pre- 
defined values is a recurring need in logic analysis. The range of 
values may represent the address locations of the contents of an 
array, or it may be the boundaries of a program module. Such a 
range specifies the areas of address space of interest to a user. 
Earlier analyzers have provided only a single range, if any at all, 
because of the expense of range detection compared to simple 
pattern comparison. The user, on the other hand, would like many 

rrays, modules, and other 
most general way of describing the 
ions in address space. Furthermore, 
containing up to fifteen events place 

nge comparators because each event 

Previous comparator designs relied upon RAM comparators 
ollowed by gating to detect the range. Such schemes required at 
least two RAM outputs and a gate for each range. In contrast, a 
simple pattern comparison can be accomplished with a single 

, RAM output feeding a wired-AND circuit with no other gating.' The 
approach taken in the 646208 Analyzer replaces the gating with 
.,another RAM. This RAM is uSed as a programmable logic element 
t o  allow greater freedom in encoding the outputs of the range 
detector RAMs. The result is that two 1024-by-4-bit RAMs and one 
.256-by-4-bit RAM can detect four independent ranges on twenty 
bits. The same three RAMs can also be used to detect up tofifteen 
'nonoverlapping ranges for use as overview events. Using the 
earlier method, four independent ranges would have required 
four 1024-by-4-bit RAMs plus four gates, while fifteen ranges 
would have required fifteen RAMs and gates. 

Fig. 1 shows a block diagram of the range detector. The 
,twenty-bit input value may represent either an address from the 
.user's system or the output of a time interval counter. This value is 
split into an upper ten-bit portion and a lower ten-bit portion, each 
feeding a separate RAM, just as an older method would. The 
difference is that the output of these RAMs is not fixed in meaning, 
but reflects the specifications of all ranges to be detected. There 
is not a direct correspondence between each output and each 

?range. Instead, the lower RAM decodes the outputs and restores 
,the correspondence. Its four output bits represent either four 
independent rangesfor trigger, store, or count qualification or one 
of fifteen events for overview measurements. 

The value applied to the range decoder can be thought of as 
one point on a line containing 220 hexadecimal values (00000 
through FFFFF). The ranges specified by the user divide this line 
into segments bounded by the range endpoints. When a value is 
sampled from the user's system address bus, it falls at one point 

>on the line. This point may be contained within none, one, or more 
of the originally specified ranges. The range decoder determines 
which case it represents as follows: 
1. Values on the line are described by a base-1024 number 

system. Any value can be described with just two digits, call 
them J and K. The ranges specified by the user are redefined 
in terms of JK pairs and the line is segmented by the endpoints 
of the ranges. Because the ranges can overlap or not cover the 
entire line, each segment may represent none, one, or more 
ranges satisfied. 

' 2. The line, divided into segments by the user specified ranges, is 
an ordered list of JK values. When an input value is received, it 
is placed on the line to determine which segment it is within. 

3. Consider the J digit of the input value. It specifies a coarse 
position on the line. This may or may not be enough to decide 
which segment the input value is within. If it is, then the K digit is 
ignored. If not, then the K digit is consulted to complete the 

, .  ~ , ,  

determination. In effect, a given J value asks a question ab 
which segment the input value is in. The question may some- 
times be answered immediately if the K value does not matter 
(point located in the middle of a long segment), but it may 
require knowledge of the K value as well (point located in a 
very short segment). The result is that a translation can be 
made from the large list of different J values to a much shorter 
list of J types. Each J type may represent a directive (if the K 
value does not matter) or a question (if the K value does 
matter). Each segment on the line may require one, two, or 
three different J types to decode it properly. One is required if 
the endpoints of the segment have the same J value, two are 
required if the J values differ by one, and three are required if 
the J values differ by two or more. The J-RAM in Fig. 1 trans- 
lates from the ten-bit J value to the four-bit J type. 

4. Now consider the K digit of the input value. It represents the ten 
least-significant bits of the value and, in conjunction with the J ' .  
digit, completely specifies where the input value lies on the 
line. But the J value has already been replaced by the J type,. ' 
and each J type represents a different question about the K 
value. Each K value will produce an answer to each of the 
J-type questionseither yes or no. Therefore, a given K value 
produces agiven set of answers, one for each question. Again, 
many K values may produce the same set of answers. These 
may be grouped together into a single K type. The K RAM in the 
block diagram translates from the ten-bit K value to the four-bit 

5. The input value has now been replaced by a J type, which 

' 

K type. 

represents one of a list of questions, and a K type, which; 
represents one set of answers. All that remains is to match: 
question with answer. This is performed by the ID RAM in the" 
block diagram. The combination of a particular J type with a 
particular K type produces a single answer, indicating which, if 
any, of the originally specified ranges are true. This answer is 
output from the ID RAM for use in trace qualification or in;: 
overview. 

Sixteen J types and sixteen K types are sufficient to decode up 
to four arbitrary doubly bounded ranges. These ranges may over- 
lap and may be inclusive (true within the bounds) or exclusive 
(true outside the bounds). This mode is used for trigger, store, and 
count qualification. Overview events, on the other hand, are de- ! 
fined to be nonoverlapping. This ensures that each input value. 
produces only one overview event. With this restriction, five 
ranges can always be decoded correctly. However, in many.. 

. _: 

Range or Event Number 

f '  
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cases, it is possible to take advantage of the flexibility of the range 
decoder to allow more events. 

The limiting factor in most range specifications is the number of 
J types available. If each overview range is relatively small (i.e., 
less than 1024 locations wide) it will require no more than two J 
types to decode it. In this case, up to eight events may be 

a single value. The analyzer firmware counts the number of J anc 
K types required to determine if the event specification can b t  
loaded. 

1 

~ 
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observation of program flow, data flow, process timing, or 
system performance. 

A block diagram of the 646208 is shown in Fig. 4. Physi- 
cally, the analyzer consists of two or more circuit cards. A 
control card is combined with one or more acquisition cards 
to provide from 20 to 120 analysis channels, expandable in 
20-channel increments. The control card contains circuitry 
independent of the number of data channels, while the 20- 
and $0-channel acquisition cards contain circuitry as- 
sociated with additional channels. This architecture 
minimizes the cost per channel by including the analysis 
overhead circuitry only once. Also, connections between 
cards are few, which increases the reliability of the system. 
A synchronous expansion bus between the cards need 
carry only timing and pattern information, and it is not 
necessary to distribute the many data channels throughout 
the system. 

Two Memories Are Better than One 
Two separate memories are included in the acquisition 

system of the 646209. A trace memory stores data from the 
input channels, as well as count information and sequencer 
status. This memory can store up to 256 states and can be 
displayed either in trace list format with inverse assembly 
or in a graphic format. An overview event memory is used to 
capture information that allows the relative occurrence and 
order of occurrence of defined events to be measured. This 
memory can store up to 4096 events and can produce a 
histogram, a graph, or a list output for display. This dual 
memory architecture offers simultaneous monitoring of 
program activity at both a detailed level and an overview 
level. This allows conelation of real-time information. 

Since the trace memory stores information received on 
the input data channels, each acquisition card contains a 
section of that memory. The control card contains the sec- 
tion that does not change in size with increasing channel 
width, namely the stateltime counter and sequencer status 
values. This distribution of the trace memory offers advan- * Channels Recognition 

Clock v Data 
Sample 

tages over a centralized architecture, in particular that of 
expanding easily with an increasing number of channels. 
However, coordinating the activities of the memory b e  
comes more complicated when it is distributed, especially 
when the storage control features are as extensive as those 
incorporated into the 646208. Reading the trace memory 
during a trace with limited clock rate allows displaying 
acquired data before a measurement is completed. This 
technique, called interactive read, is important when the 
stored data is highly qualified, which means that only in- 
frequently selected pieces of data are written into the mem- 
ory. In this case, a measurement could take seconds, min- 
utes, or even hours, and it is not desirable to stop the trace to 
see the data because some data might be missed. 

The overview memory has the task of capturing decoded 
information called events. These events are decoded by the 
range decoder circuit (see box on page 18) and consist of 
simple four-bit values. The small size of the event number 
allows this memory to store more values. The overview 
memory also incorporates an interactive read feature, al- 
lowing histogram data to be updated as new events are 
detected by the overview analyzer. 

The dual-memory architecture allows simultaneous, cor- 
related measurements. In particular, a trigger from the 
overview memory to the trace memory allows tracing of 
detailed data relating to an overview event occurrence. For 
example, an overview event of time ranges can trigger the 
trace memory to trace the parameters passed to a routine 
that takes longer or shorter than a specified period of time. 

I 

1 

Custom ICs Are the Key a 
Using custom integrated circuits in many functional 

areas allows the extensive set of real-time analysis 
capabilities in the 646203. The interface to the &1OOO's 
high-speed intermodule bus (IMB) is closely associated 
with the analysis functions of the 646208. Because of the 
bidirectional nature of the IMB and the number of con- 
trolled functions, the interface circuits were incorporated 

F-i Channels 

Trace List Memo1 

Intermodule 

Q 

Tirne/Stal 
Counter 11 

Overvievi 
Event 

Fig. 4. Block diagram of the 646209 Logic StatelSoftware Analyzer. This configuration is 
a 20-channel analyzer with overview. 
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An inverse assembler combines captured address, data and 
status information to generate a mnemonic representation of the 
machine code for the processor being monitored. An inverse 
assembler performs the opposite function of an assembler; it 
translates CPU machine code back into the mnemonic represen- 
tations used in the generation of the CPU program. 

Inveme Assembly Language 
The inverse assembly software for the 646209 Logic State/ 

Software Analyzer was developed using a specially designed 
language called the Inverse Assembly Language (IAL, see Fig. 
1). Resembling an assembly level language for the most part, IAL 
also contains instructions characteristic of a higher-level lan- 
guage, several of which are dedicated to specialized inverse 
assembly related functions. 

An interpreted code, IAL can be thought of as running on a 
32-bit pseudomachine. A wide range of logical, arithmetic and 
utility instructions operate on a single 32-bit accumulator. In addi- 
tion, a large number of 32-bit variables can be defined by the 
program, any of which can be transferred to or from the ac- 
cumulator. Alphanumeric string constants of up to 64 characters 
can be defined, as well as 32-bit numeric constants. 

Included in IAL is a CASE statement, whose index may be a 
group of accumulator bits or an entire 32-bit variable. An IFflHEN 
construct adds considerably to the high-level programming 
capability of the Inverse Assembly Language. 

Several predefined variables pass address, data, and status 
information from the analyzer trace memory to the inverse assem- 
bler. In the case of multiple byte instructions, or other similar 
situations, the INPUT instruction provides the inverse assembler 
with the capability to read additional captured states from the 
trace memory. The inverse assembler uses the OUTPUT instruc- 

OPERAND-COLUMN CONSTANl 
STRINGAMP ASCII 
REGISTEMUMBER VARIABLE 
MCODE-ASRISRJMP 

LOAD INITIALDATA 
CASE-OF 2.1 

OUTPUT "ASR" 
OUTPUT "LSR" 
GOT0 ILLEGAUNSTRUCTION 
OUTPUT STRINGAMP 

CASEJND 
POSITION ABS.OPERAND-COLUMN 
CASE-OF 2.2 

C A S E l N D  
RETURN 

CALL ASRISLOPERAND 
CALL DISPLAYJESTINATION 

ASUR-OPERAND 
INCREMENT INPUTSDRESS 
INPUT ABS,INPUTSDRESS.QUALlFlED 
IF INPUTJRROR () 0 THEN QOTO ERROR 
LOAD INPUT-DATA 
IF7.7=1 THENANDOOOOllOOB 
ROTATE RIGHT.2 
STORE REGISTEUUMBER 
CALL SHOWJEGISTER 
RETURN 

- 

;Display position for operand 
;String used several times 
;Save register #. inkally 0 
;Decode ASR, LSR, JMP 
;Reload inltial o w e  
;Accumulator lnt 2-1 
; Bit2-1 = OOB 
; M 2 - 1  = 016 
; 8112-1 =1OB 
; m a - 1  =11B 

;Move to operand column 
;Accumulator Mt 2 
;Decode ASR and LSR 
;Show JMP address 

;Return to analper 
; A M .  LSR, subroutine 
;Pdnt to next opcode 
;Try to read next opcode 
;Leave N error 
;Get new o w e  value 
;Mask it necessery 
;Move to Icwar 2 b b  
;Saw, rdsler I for later 
;Display register name 
;Subroutine return 

tion to display its results. 
For users of proprietary machines or other processors not sup- 

ported by Hewlett-Packard, IAL provides an essential tool to 
developers of inverse assemblers. A specialized development 
language such as IAL is of additional benefit in simplifying de- 
velopment and reducing inverse assembler design-cycle time. 

Inverse Assembler Operatlon 
Upon a request to display a currently undisplayed CPU state, 

and if the mnemonics display option is selected in the trace list, 
the analyzer performs a call to the inverse assembler software 
module, passing to it address, data and status information for the 
new state. The inverse assembler then performs an operation 
appropriate to the status of the new state, formats a display and 
returns to the analyzer software. At this point, the inverse assem- 
bly display is written onto the instrument's CRT (see Fig. 2) and 
preparations are made to call the inverse assembler again if 
necessary. 

Inverse assembly goes beyond simply displaying the 
mnemonic for the instruction being executed. Using the INPUT 
instruction provided in IAL, the entire instruction, including in- 
struction operands, is displayed in the same form as was used in 
programming the CPU. In most cases, the mnemonic inverse 
assembler output can be assembled directly. 

Many instruction types common to all CPUs specify source 
and/ordestination addresseswithin the instruction (jump and call, 
for example). In writing programs using such instructions, pro- 
grammers prefer using symbolic address labels rather than 
numeric addresses. The inverse assembler can obtain or calcu- 
late the address from the instruction itself. Using the address 
mapping function provided by IAL, it can then locate a corre- 
sponding symbol within the analyzer address map and display 
the same symbolic address as used by the programmer. Sym- 
bolic tracing clarifies and simplifies analyzer measurements, and 
relieves the programmer of having to remember often meaning- 
less absolute addresses. 

57RTU5: b a i t i n g  state c o d  - UScrld 11:14 

Fig. 1. Example code from an inverse assembler written in 
IAL. 

Fig. 2. Analyzer trace list showing inverse assembler display 
with user-defined symbols. 

in to  a custom integrated circuit. This circuit, called the 
analysis controller, provides the necessary control for the 
trigger, store, count, sequence, and overview functions. By 
including the IMB interface o n  the analysis controller, tight 
coupling between these functions and the IMB functions i s  

possible. An example of this coupling i s  the pervasive mas- 
ter enable function. Essentially, a l l  control functions of the 
64620s must monitor the IMB master enable function, sus- 
pending and resuming analysis activities in response to  i t s  
changes. 
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emory and acts as the interval counter for over- 
time or state counts. The clock detection cir- 

User interface Design 
The 646208 software provides a means for entering mea- 

surements and displaying the acquired data in useful for- 
mats. To handle the wide range of features that are available 
for effective state and software analysis, the user interface to 
the 646208 divides the various activities of setting up the 
analyzer into sections. Measurements are specified, for 
example, in the trace specification, while input channel 
formatting is done in the format specification. This division 
of tasks makes each section easier to understand and oper- 

resources a 

grows in a degree equal to the task at hand. 

Symbolic Operation 
In all input specifications and output displays, the 

646208 software provides symbolic operation. Labels, such 
as the channel grouping Address, and symbols, such as 

dress values of the stack 
labels and symbols are 
in the analyzer, Also, the 

directed-syntax technique used in the 64000 System is ex- 
tended to provide these labels and symbols on softkeys at 
the appropriate point in a command line. The association is 
made by grouping symbols together into a data structure 
referred to as a symbol map, and then defining a default 
map for each label. Thus, entering commands such as trigger 
on Address = range STACK can be done using only the 
softkeys. 
, Not only are the labels and symbols available on softkeys 
for entry of commands, but they are also used in the trace 
list to display acquired data in easily recognized forms. For 
each column label displayed in relative mode, a dynamic 
lookup in a symbol map is performed. Normally the default 
map is used, but any named symbol map can be specified. If 
a symbol corresponds to the data value, this symbol is 
placed in the list and an offset is added if the symbol 
represents a range of values, This eliminates the tedious 
task of mentally translating the data into ameaningful form. 

The symbolic entry and output capabilities of the 646203 
eliminates much of the detail work, very much like a 
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opment engineer with five years of 
rk experience. He attended Col- 

. i. 

Analyzer for the 64000 S 

plays guitar. 

Rlchard A. Nygaard, Jr. 
Rick Nygaard came to HP in 1977 after 
receiving a BEE degree from the Geor- 
gia Institute dTechnology. Besides his 
work on the 646208 Analyzer, he has 
worked on firmware changes for the 
16106 Analyzer. Born in Spokane, 
Washington, he now lives in Colorado 
Springs, Colorado. He is interested in 
woodworking and enjoys skiing, bicy- 
cling, backpacking, and playing 
softball. 

Bryce S. Wdwln,  Jr. 
Bryce Goodwin earned a BS degree in 
electrical engineering and computer 
science at the University of Colorado in 
1978 and joined HP shortly thereafter. 
He is a software designer for the 
646208 Analyzer. Bryce lives in Col- 
orado Springs, Colorado, where he was 
born. He is married, and has two chU- 
dren. Outside of work, he enjoys skiing 
(downhill and water), hunting, and fish- 
ing. 

22 HEWLETT-PACKARD JOURNAL MARCH 1983 @ 



quire relatively short learning periods before the instru- 
ment can be used. Instruments designed for very specific 
applications generally belong to this category. However, 
unless user configurability becomes a principal design 
goal, as in the case of the 646208 Analyzer, general-purpose 
instruments may fall short of these requirements. 

Through an automatic configuration process, the 
general-purpose 646208 Analyzer appears to be specially 
designed for the process under test. In addition, the 
analyzer can be further configured to appear tailor-made for 
the program environment being monitored. This additional 
configuration process can occur as part of the automatic 
configuration or can be done later by the user. 

If a CPU-specific interface module is used, automatic 
instrument configuration occurs upon entry to the 646208. 
The interface probe module supplies an identification code 
to the analyzer, indicating the type of CPU being monitored. 
This identification code selects the proper configuration 
file. The subsequent automatic configuration process then 
adapts the analyzer's operation to the characteristics of the 
monitored CPU, creating the perception that the 646208 
was designed specifically for that CPU. 

Automatic instrument configuration is also provided 
through the general-purpose interface module. This device 
allows the user to design an interface module meeting the 
requirements of a specified CPU. A 16-position rotary 
switch, located on the general-purpose interface module, 
provides the 646208 with an identification code so that it 
can locate and automatically load the applicable, user- 
defined configuration file. Thus, the analyzer can be au- 
tomatically configured for proprietary machines or other 
processors not supported by Hewlett-Packard. 

Associated with the general-purpose interface module, 
the inverse assembly language (see box on page 21) pro- 
vides for user-generated inverse assemblers. Inverse as- 
semblers are specified by the automatically loaded config- 
uration file, so that inverse assembly, as well as instrument 

@ 

'1 

- _ _  
General-purpose probes provide an alternative to the use 

of the general-purpose interface module or other HIJ stan- 
dard interface modules. Although an identification code is 
not available to inform the analyzer of the type of CPU being 
monitored, modification of the default configuration file 
can still result in automatic instrument configuration. 
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A Modular Logic Timing Analyzer for the 
64000 System 
by Joel A. Zellmer, John E. Hanna, and David L. Neuder 

LOGIC TIMING ANALYZER asynchronously sam- 
ples data flow in the system under test and is A primarily used to troubleshoot hardware-related 

problems in digital circuitry. It is optimized for showing 
time relationships between digital signals, an area where 
oscilloscopes are often used. Timing analyzers, however, 
offer features not found in most oscilloscopes, making them 
especially useful in testing digital circuitry. The following 

* .  

characteristics or timing analyzers differentiate them trom 
oscilloscopes: 
m Two-level vertical resolution 

Single-shot recording of multichannel data 
Simultaneous display of up to 16 channels 
Display of data flow occurring before a trigger condition 
Triggering capabilities tuned to the multichannel digital 
environment. 

I 
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e modes of data acquisition, including high-reso- 
on, missed data or glitch detection, and dual- 

threshold measurements 
Powerful and flexible triggering, including triggering 
from other digital analysis systems such as a synchron- 

Ease of use (setting up and executing measurements and 
formatting of output]. 
The data acquisition modes of the new 646008 Timing 

Analyzer (Fig. 1) allow the user flexibility in troubleshoot- 
ing. The high-resolution mode allows sampling at 400 
MHz, giving excellent timing resolution often needed in 
examining timing margins, even on low-speed data buses. 
The memory depth of 8140 samples per channel gives a 
timing window 20 ps wide with 2.5-11s sample resolution. 
The dual-threshold mode, which displays three-level 

, simplifies troubleshooting such problems as 
bus conflicts, improper loading, slow rise times, and noise 
on signal lines. A glitch detection mode is useful when it is 
necessary to select slower sample rates to cover a long time 
window in a particular measurement, while not missing 

rt-duration activity occurring between samples. 
lasting only 3 ns can be displayed. 

The triggering capabilities of the 646008 are designed to 
solve timing-related problems in multichannel logic envi- 
ronments. In addition, the analyzer uses a very easy and 

Fig. 1. HP Model 64600s Logic Timing Analyzer adds power- 
ful, high-resolution, asynchronous analysis to the MOO0 Logic 
Development System. It has eight input channels and can be 
expanded to sixteen input channels. The 646005 can be 
added to either the 64 1 OOA or64 1 1 OA Development Station as 
part of a hard-disc-based cluster system or as a stand-alone 
analyzer in a flexible-disc-based station. 

interface to aid the new or occasional 

applications for the 646008 Timhg 
alyzer. It is a valuable tool far checking out new digital 

faulty circuitry. To 
s can: 
aveforms and single 

shot events 
D Examine the time relationships between signals, setup 

and hold times, and other events. 
D Detect unwanted transitions on sig 
D Detect fan-out problems, bad logic 

and fall times 
D Detect conditions that last longer or shorter than some 

specified duration. 
The timing system is modular, consisting of a control 

board and an  acquisition board with accompanying 
8-channel probe. One control board can drive one or two 
acquisition boards s at a single module can have 8 or 16 
channels, Multiple or other modules can be con- 
nected through the System IMB (intermodule bus), 
allowing intermodule interaction. The 
sign allows to and 
and probes th ardw 

As part of the 64000 System, the 64600s provides other 
advantages. For example, because the 646003 is disc based, 
new postprocessing features can be added easily. Data files 
can be processed using a station’s PascaU64000 capability. 
Data measurements can be stored on flexible dises and 
brought to other systems for analysis. Detailed setups for 
particular measurements can be stored in configuration 
files, and then quickly reentered into the timing analyzer to 
be executed. The 64000’s intermodule bus allows complex 
interaction with other modules such as emulators, state 
analyzers, or other timing analyzers. Using the terminal 
mode software, measurements can be performed at remote 
sites and the data transferred viaRS-232-W.24 and modem 
interfaces to another unit at a central location. 

operator Interface 
Before delving further into the measurement features of 

the analyzer, a discussion of the operator interface is impor- 
tant since this often determines the utility of an instru- 
ment. Any instrument that is easy to understand and use 
will be of more use and provide more data to the user. The 
646008’s operator interface is designed to be a friendly 
interface by extensive use of directed-syntax and sentence- 
like commands, and display of only pertinent information. 
A directed-syntax structure prompts and directs the user 
through a command tree-freeing the user from having 
to remember keywords and key sequences. With directed 
syntax, the next level of valid keywords to complete a com- 
mand is always displayed on the softkey labels. The softkeys 
eliminate the frustration of keying in an illegal key sequence, 
because they track only valid commands. A simhle default 
execution of the 646008 allows the user to examine all sig- 
nals input to its probes by specifying o 

. 

e 
Brings in the timing analyzs software 
Display automatically changes to the timing 
diagram display 

timing 
execute 
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The use of sentence-like commands brings clarity to the 
measurement setup and display of data:\For example, to 
produce a timing diagram of a signal called SYNC, which 
has been connected to pod 1, input 0, the following com- 
mands are invoked: 

ti* 

show format-specification 

define SYNC pod- lhi t  0 

show trace-specification 

Brings in the timing 
analysis software 

Moves to the format display 

Sets up the label SYNC 

Moves to the trace specifi- 
cation display 

trigger on entering SYNC = I Sets up the trigger condition 

execute 

display SYNC 

Display gutomatically 
changes to the timing dia- 
gram display 

Sets up the timing diagram 
to display the signal labeled 
SYNC 

The 646008 displays only pertinent information about 
the specifications that the user enters. As the user requests 
more complex measurements, the display specifications 
list the additional complexity. 

The user interface is partitioned into four displays: for- 
mat specification, trace specification, timing diagram, and 
trace list. In each of these displays the user can specify 
commands specific to that display. For example, in the 
format specification the user can specify labels for the probe 

s, while in the trace specifi- 
and sample rate can be 

and trace list displays, 
commands specific to the measurement data display format 
are found. Also, in each of these displays the user can 
specify common operation commands to execute and halt a 
measurement. There is no need to go to a special display to 
run the 646003 Timing Analyzer. The user interface also 
allows measurement setups to be stored in and reloaded 
from files. Therefore, there is no need to remember an old 

instead, it can simply be brought back 
through the file handler of the 64000 System. 

zer samples data on its prob 
- .  - -- . 

inputs in four different modes: wide sample, dual- 
threshold, fast sample, and glitch capture. Eachmodeoffers 
different views into the network under test. These choices 
are available within the same instrument, and aI1 are under 
software control from the s m e  displays (specifications). 
The consistat int ce of the 646OoS, independent of 
mode, enhances the user's ability to make the measurement 
and to interpret the data correctly. 

wide hkrmple Mods 
The most commonly used mode is wide sample, which 

bits of data for each of eight inputs on each 
sample rates from 2 Hz to 200 M H z  (0.5-s to 
. Depending on the analyzer option, there can 

trace specification, and timing diagram for an &channel 
analyzer are shown in Fig. 2. 
For a typical measurement, the user begins by defining 

labels to be associated with the probe pod inputs. These 
labels should be relevant to the names of the points probed, 
The labels shown on the left in Fig. 2a are mapped via the 
asterisks to a particular input or group of inputs. Thus, LWR 
is a label associated with pod 1, input 4, while STATUS is a 
multibit label associated with pod 1, inputs 5 through 7. 
Note that the muitibit label STATUS i s  composed of three 
separate single-bit labels: IOM, So, and SI. The user then has 
the choice of two ways of representing the input signals to 
be tested. For example, triggering on STATUS = 011 is the 
same as triggering on IOM = O, So = 1, and SI = I. The 

holds default to TTL levels as shown on 
with a positive-true logic sense. These 

can be redefined by the user to positive- or negative-true 
logic values between +1OV and -1OV, respectively. The 
labels transfer automatically to all other specifications in 
the analyzer 80 that the user can define trigger conditions, 
display formats, and other parameters by using labels rather 
than, for example, pod-l-bit 0. This makes using the 
646008 easier, faster and more accurate since the user 
works in terms associated with the user's system rather than 
in terms of the analyzer connected to it. 

Dual-ThretsMd Mod@ 
By presdng the mode softkey, the user is given a chaice of 

Fig. 2. Typical (a) format specification, (b) trace specification, and (c) timing diagram displays 
for an eight-channel 646008 Analyzer in the wide sample mode, 



just a simple timing analyze 
TTL bus, for example! confl 

can cause a line to cross the nominal threshold (V, typ= 
1.4V) and be detected as a transition by a simple analyzer, 
but may not produce a valid logic high p2 .0  volts) or low 
( 4 , s  volts). Fig. 3a illustrates some of these conditions. 
Similarly with ECL circuits, weak pulldowns can cause a 
poor logic low. 

These conditions can be found using the dual-threshold 
mode in which each input is compared to two thresholds, 
V& min and Vil max, at sample rates from 2 Hz to 200 MHz. A 
three-level display (Fig. 3c) shows the time spent between 
thresholds and any incomplete transitions. Fig. 4 shows the 

3t Fanout Too High 
... ... ”. - 

5 10 15 20 25 
Time (ns) 

la) 

11 1 1 
I 

Flg. 3. Use of dual-threshold mode to analyze LSTTL 
waveforms (a) which are degraded by high fanout (curve 1). 
slow rise time (curve 2), or noise (curve 3). (b) Detection of 
Curves 1, 2, and 3 by a simple timing analyzer with a single 
threshold set to V, tvD. (c) By using the 646008 Analyzer’s 

can be detected as 

-L 

ode, only four inputs are active on 

put channel. The format specificatioa 
strates the use of dual-threshold mode 

within the previous measurement setup. 

Fast Sample Mode 
Should more time resolution be required than available 

using the 5-11s sample period in the wide sample mode, the 
fast sample mode using a 2.5-11s sample period (400 MHz 
sample rate) can be selected. This is accomplished by al- 
locating two samplers to each input with a 2.5-11s time 
separation between the samplers, and results in an 8K 
memory. This restricts the number of inputs that can be 
sampled to those in the lower half of the probe, but this 
sample rate is typically needed to compare data on a small 
number of channels. 

Glitch Capture Mode 
Despite the 4K memory of the 64600S, which provides 20 

ps of storage at 200 MHz, there are instances whenvery long 
d the user still wants to be 

en brief events. The glitch- 
capture mode monitors edges on the incoming data as well 
as sampling the data from 2 Hz to 100 MHz. If more than one 
edge occurs between two adjacent sample times, it records 
this event in a separate memory as a glitch. The presence of 
this glitch can alert the user to examine the data in this 
region more closely by using one of the other modes, Since 
separate circuitry and memory are used for glitch detection 
and recording, glitches do not distort normal edge loca- 
tions, and glitches occurring close to or on edges are cap- 
tured and displayed. 

Trtggerhg 

J Triggering upon entering a pattern 
m Triggering upon 1 

Triggering on greater than a specified duration of a pattern 
(including a middle level in the dual-threshold mode) 
Triggering on less than a specified duration of a pattern 
(including a middle level in the dual-threshold mode) 
Triggering on combinations of patterns and glitches. 
In this discussion, “pattern” indicates the value of an 

ANDed group of inputs, or the complement of that value. 
The five types of triggering qualify the trigger in ways not 

possible with B simple occurrence trigger. Triggering only 
on entering or leaving a pattern means that the analyzer will 
not trigger if the pattern is present when the analyzer is 
started. On the other hand, triggering on greater than or less 
than some time duration of the pattern produces a trigger 
whenever the qualified duration is reached. The duration 
trigger types are especially useful because they allow the 
user to set the duration to a value larger or smaller than any 
duration expected, and trigger on that event if it occurs. To 
illustrate this capability, refer to Fig. 5. Here it is possible to 
trigger the analyzer when the duration from REQueSt to 
ACKnowledge is either too long or too short. An example 

The wer can choose any of five types of triggering: 
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Fig. 4. Typical dual-threshold-mode (a) format specification, (b) trace specification, and (c) 
timing diagram displays for the 64600s. 

REQ = 1 and ACK = 0. 
Additional cross-pod triggering in a 16-channel 646008 

Timing Analyzer allows conditional OR triggering, condi- 
tional duration triggering, and sequential triggering. An 
example of conditional duration triggering can be shown by 
again referring to Fig. 5. It is desirable to trigger on the 
occurrence of the acknowledge signal going high without a 
request signal. Note that triggering on ACK = 1 and REQ = 0 
happens at the trailing edge of a normal handshake. How- 
ever, triggering on ACK going high while REQ is low exactly 
catches the faulty condition. An example trigger command 
might be trigger on entering ACK = 1 when-greater-than 1 
u s e c a f  REQ = 0. 

A programmable time delay is also available. This allows 
delaying trigger events (as described above) up to 32 mil- 
lion clock cycles. The delayed trigger point can be 
positioned anywhere in the acquisition memory: start, 
middle, end, ora definable percentage of the memory before 
the delayed trigger point. 

Intermodule Bus interaction 
The 646008 Timing Analyzer, through the 64000 Sys- 

tem's intermodule bus (IMB), can arm or trigger other mod- 
d e s ,  or can be armed, triggered, or delayed from other 
modules in a 64000 Development Station. 

As an example of intermodule triggering, a state analyzer 
in the 64000 Station could be tracing a long sequence of 
events, and when this sequence is satisfied, arm the 646008 
Timing Analyzer. The timing analyzer then triggers when it 
satisfies its own internal trigger conditions. 

An additional autorestart function is also available when 
using the 646008 with the IMB. This is useful in correlating 
timing phenomena with subsequent faulty state flow. The 
timing analyzer can look for a pattern, trigger, complete its 
trace, and then wait for a state analyzer to tell it what to do 

via the IMB. If the state analyzer observes normal state flow, 
it can tell the timing analyzer to reset and start over again. If 
after the next timing measurement the state analyzer ob- 
serves faulty state flow, further restarts would be inhibited 
and the timing trace containing the data that produced the 
faulty state flow can be observed. 

Displaying Data 
The 646008 Timing Analyzer can display measurement 

data in the form of either a timing diagram or a trace list. The 
timing diagram presents up to sixteen channels of mea- 
surement data. The channel ordering and spacing can be set 
up using labels that the user enters or default channel num- 
bers. By selecting appropriate labels, the user can present 
the measurement data in a form that gives a clear descrip- 
tion of what has been measured (see Fig. 2c and Fig. 4c). 

Magnification, time cursors, and memory indicators are 
important features for study of the timing diagram. Mag- 
nification along the time axis allows the fine detail of a 
portion of the timing diagram to be expanded. Three pow- 
ers ofmagnificationareallowed: XI, ~ 1 0 ,  and ~ 1 0 0 . I n  XI, 
the measurement data (4060 samples) is compressed into 
203 display characters by a 20:l compression routine. Mul- 
tiple transitions in each 20-sample group are indicated with 
a multiple transition character (glitch symbol). Thus, the 
user can use the x 1 magnification to find regions of activity 
and use the other magnifications (~10, ~ 1 0 0 )  to see more 
detail of each region of activity. This is significantly differ- 
ent from many analyzers, which compress multiple transi- 
tions into a single transition and make it difficult to distin- 
guish regions of activity from simple transitions. 

Multiple time cursors (x, o in Fig. 2c and Fig. 4c) are 
available in the 646008 to measure durations of events or 
intervals between events. Graticules and time-per-division 
information provide the user with another reference to the 
amount of time that is shown. Also, the position of the 
indicator ( M A )  under the timing diagram shows the por- 
tion of the trace that is currently being observed. 

Hard copy of the timing diagram and the trace list are 
available to record the measurement data when needed. 

Fig. 5. The different triggering modes of the 646003 Analyze&?$ 
can be used to examine the relationships between a system's 
REQ and ACK handshake waveforms. 

Probing 
The 64604A Timing Probe consists of a cable connected 

to the acquisition board in a 64000 mainframe, a detachable 
pod housing a hybrid circuit containing the active com- 
parator, and eight detachable coaxial probe inputs similar 
to oscilloscope probes. As a result, all the accessories for 

:, ' " ,  
. I  
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HP's 10017A Series Oscilloscope Probes (e.g., grabbers and 
clips) can be used with the 64604A. A new 20-pin dual-in- 
line package clip, the 10211A, has also been developed. 
This accessory allows easy connection to most 0.3,0.4,0.6, 
and 0.9-inch-wide dual-in-line IC packages. The 10211A is 
also stackable, end to end, to allow probing all the pins of 
40-lead or 60-lead packages. 

The probe inputs are compensated to provide the com- 
parator in the pod a high fidelity reproduction of the signal 
at the probe tip, avoiding the ringing and resulting uncer- 
tainty associated with open-wire probes and fast edges. The 
input impedance at the tip is 100 k n  in parallel with 6 pF. 

The probe has two comparison thresholds, one for chan- 
nels 0 through 3 and one for channels 4 through 7. The 
thresholds are set by software from -1oV to 1oV in 0.1V 
steps. The dynamic range of the probe is specified as +1OV. 
Exceeding this value, as might happen with CMOS circuits 
using 15V supplies, causes less than 1 ns of additional skew 
as the input clamps are activated, and essentially no change 
in loading. 

Hardware Organization 
The data acquisition path of the 646008 uses three CUS- 

tom, bipolar EFL integrated circuits: an input comparator 
chip, a glitch chip, and an array of encoder chips. Fig. 6 is 
a block diagram of the data acquisition path showing how 
these chips are used and the effect that changing the 
acquisition mode has on data flow and memory allocation. 

The custom 8-channel comparator chip receives the 
input data through the passive RC dividers. Having all eight 

Fig. 6. Data flow for the 64600s'~ 
four acquisition modes. (a) Wide 
sample. (b) Dual-threshold. (c) 
Glitch capture. (d) Fast sample. 

comparators on the same chip keeps the interchannel skew 
low without requiring delay adjustments. In the dual- 
threshold mode, the same input signal is sent to upper- 
threshold and lower-threshold comparators. An output 
data stream is generated for each threshold level. The com- 
parator outputs drive complementary ECL signals down 
twisted-pair transmission lines to the glitch chip. 

In the glitch chip, input data and glitches are sampled 
and basic trigger comparisons are made. The maximum 
samplerate of this chip is 200 MHz. In the fast sample mode, 
the data outputs consist of two 200-MHz data streams per 
channel, one delayed by 2.5 ns with respect to the other. 
Again, because the data from all eight input channels is 
sampled on one chip, the delays are inherently well 
matched. Special care was still required to adjust the input 
aperture for both positive and negative data transitions to be 
at the same point with respect to the sample clock. 

Each of the eight outputs of the glitch chip is fed to an 
encoder chip to do a serial-to-parallel data conversion. This 
chip slows down the data rate to the TTL memories by a 
factor of sixteen. In other words, it effectively changes a 
12.5-MHz memory to a 200-MHz memory. A block diagram 
of this encoder chip is shown in Fig. 7. The TTL data 
outputs of this chip are fully buffered, the data remaining 
constant at the memory inputs for a full write cycle time. 

The above acquisition functions reside on the data ac- 
quisition board. The control board generates the sample 
clocks, processes the raw pattern trigger information for 
time duration specifications, and controls the measurement 
by starting and stopping the data acquisition cycle in ac- 
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Fig. 7. Encoder chip block 
gram. 

dia- 

cordance with the amount or pretrigger information de- 
sired. This board also generates the timing diagram. 

The time-duration triggering organization is shown in 
Fig. 8. The three basic duration modes are transition (enter- 
ing, leaving, glitch), time duration for greater than a preset 
value, and time duration for less than a preset value. These 
modes are generated by an edge detector coupled to cir- 
cuitry that tests to see if the input pattern lasts longer than 
the preset value. The edge detector, together with the 
selectable inversion, generates triggers when the specified 
input pattern enters or leaves. The width-greater-than cir- 
cuitry generates triggers when the duration for a pattern or 
the complement of that pattern is wider than a specified 
time. Outputs of both of these detectors are used to generate 
triggers for a less-than-time duration. Here the presence of 
an edge denoting that the trigger condition is going false is 
N e d  with the status of the width-greater-than detector. If 
the width signal is false, this implies that the pattern was 
narrower than the width specification. 

Resolution 
It is important to understand what determines the timing 

resolution of a timing analyzer to properly interpret the data 
it shows the user. Fig. 9a shows an example of input data 
and the corresponding sampled data information. Note here 
that different input data can result in the same displayed 
information, because the data sampler only looks at the 
incoming data at sample times. The resolution between 
edges on the timing diagram is limited to one sample 
period. Another problem, that of skew, or differences in 
delay between edges on the same or different channels, also 

strongly affects the available resolution. For example, if the 
timing analyzer internally delays the data from channel 1 of 
Fig. 9b by 1 ns longer than the data from channel 2, the edge 
resolutionnow becomes ?(sample period + 1 ns). Skew can 
also occur on a single data channel if the delay to the 
sampling aperture is different for a positive data transition 
and a negative data transition. This type of skew can stretch 
or compress pulse width. 

In production, skew is measured using a routine present 
in the 646008 self-test software. This procedure uses a sta- 
tistical beat-frequency approach to measure the skew of the 
acquisition circuitry. Consider the following conditions: the 
sample clock is operating at 200 MHz (5-11s sample period), 
theinputdatarateis 10.01MHz(99.9-nsperiod),andthemem- 
ory of the analyzer can store 4060 samples. This means that 
every time a new data edge appears at the data sampler, its 
time location with respect to the sample clock has been 
shifted by 100 ps, or for every 50 data edges, one complete 
sweep of edges will occur through the sample period (one 
beat]. In this example, 4000 bits of memory would then hold 
approximately four beats as shown below: 

(4000 x 5 ns)/(50 x 99.9 ns) = 4.004 beats 

To calculate the skew between a reference edge of particular 
polarity on one channel to an edge of either polarity on 
another channel, the following formula is used. 

(number of misaligned edges) 
(number of edges compared) sample period= skew 

1 
Raw Pattern 

(Detects trigger k- .WWldth-Greatw-Thon I 
Detector 

Qualified 
Trigger 

to 
D S k V  

circuit. I Flg. 8. Organization of time- 
duration triggering circuitry. 
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oftware package for dr 4 Sertware Salutions to Dlsplayfng 

per channel in a short amount of time can be a di 

were developed to reduce this time. 
The display memory consists of 240 characters per chan- 

nel. Each character is composed of a two-bit pattern, GD, 
where G indicates if the multiple transition symbol (glitch) 
is to be displayed and D indicates if data is high or low. Each 
two-bit pattern is separately addressable. The acauisition 
memory consists of 4096 samples L, -..... yv 

sixteen samples from each channel ---L-A :* 

able 16-bit word. Originally, the u a L u  w a o  puunrru 

form DO, D1, D2, ..., D15, but trying to convert this into a 
format (GODO, G1D1, G2D2, ...) acceptable for the display 
memory was a problem. The solution is to modify the out- 
put of the acquisition memory so the packed word is in the 
form D8, DO, D9, D1, D10, D2, ..., D15, D7. Now, by simply 
masking the pattern with a hexadecimal 5555 mask, and 
shifting and masking again, the two words 0, DO, 0, D1, ..., 0, 
D7 and 0, D8, 0, D9 ,..., 0, D15 are produced. The glitch 
information is processed the same way and merged with the 
data providing the proper format for the dionln*r m-mnm‘ 

Displaying sixteen channels of data with 406 ided in the initial user 
developed the performance ve 

A minor hardware change and a specid software the final User interface. Steve 
Peurifoy did the electrical design for the probe. Dave 
BauW3art.en did the ~ e c h a d c a l  design for the IC Chip PrOb- 
inf3 accessory. LmY Anderson helped in easing the Product 
into Production. 
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Emulators _;or 16-Bit Microproce lors 
by David B. Richey and John P. Romano 

HE ADVANTAGES OFFERED by microprocessors 
have resulted in their use in a large portion of today’s T electronic designs. Because of their versatility and 

complexity, microprocessors frequently create problems 
for the designer. Microprocessors reside in their systems, 
veiled behind their protective plastic or ceramic packages, 
so that their inner activities are invisible. Their control 
mechanisms are untouchable. The task of working with 
these components, therefore, is often greatly aided by re- 
moving the microprocessor from its socket and inserting an 
emulator in its place. An emulator provides a window into 
the inner operation of a microprocessor and simulates its 
activity, giving designers the feedback and control neces- 
sary for development work. The feature set of a typical 
emulator includes: 
m Loading, displaying, and modifying memory 
m Displaying or modifying UO space as appropriate - Displaying or modifying processor resources such as 

working registers, DMA registers, and counters 
Starting or stopping execution 

’a Various documentation-related capabilities, like listing 
the above information to disc files or a printer 

m Display and use of symbols. 
With such features, the use of in-circuit emulation to 

design, test, and service microprocessor-based products 
has become accepted as a productive technique, and has 
contributed to the widespread use of such products. 

As the use of microprocessors became more com- 
monplace, the desire for more capability led to 16-bit mi- 
croprocessor designs. In addition to having wider data and 
sometimes wider address buses, 16-bit microprocessors 
have much greater complexity than their 8-bit predeces- 
sors, These changes in processor technology have required 
corresponding changes in emulation philosophy and 
hardware. 

The 64000 Logic Development System’s first-generation 
emulators1 were designed to aid the development of an 8hi t  
microprocessor-based system. These software and 
hardware tools gave designers the power to complete a 
complex new product design efficiently, handling all 
phases of the design cycle from the early breadboard to the 
final system softwarehardware integration and test. 

HP’s second-generation emulators provide support for a 
variety of new 16-bit microprocessors. The difference in 
complexity between the 8-bit and 16-bit microprocessors 
demanded that we design new hardware and software to 
support our earlier 6-bit implementation. This approach 
gave us the opportunity to expand the previous feature set, 
implementing new features and adding breadth and flexi- 
bility to existing ones. 

Emulator Hardware Design 
The 16-bit processors increase the need for an emulator to 

work symbolically with compilers, to be flexible enough to 

accommodate the diverse systems in which 16-bit proces- 
sors are used, and to be included in cross-coupled mea- 
surements with other emulators or other instruments. 
Naturally, the new 64000 16-bit emulators use the 64000’s 
directed-syntax user interface, which includes the capabil- 
ity to create command macros using command files. 

The hardware design was simplified by basing it on the 
expandable emulation bus architecture originally used for 
HP’s earlier 8-bit 808018085,6800, and 280 emulators. The 
emulation bus connects a set of standard cards that include 
emulation control boards, memory control boards, emula- 
tion memory board(s), and a state analyzer board. The emu- 
lation control board controls execution. The memory con- 
trol board contains an addre& mapper to partition thead- 
dress range between user memory and emulation memory 
and to apply type and protection attributes. Emulation 
memory boards are used for prototyping. The emulation 
bus is entirely separate from the 64000 host processor bus. 
This avoids interference with an emulator when the host 
processor is conducting 64000 System activity. Multiple 
emulators in one 64100A or 64110A Development Station 
can operate independently since each emulator uses a sep- 
arate emulation bus. Separating the buses also makes it POS- 
sible for the host processor to set up an emulator in a watch- 
dog measurement, which continues while the host moves on 
to operate, for example, another emulator, an external 
analyzer, or an edit session. 

Wider Addresses 
The emulation bus is universal and expandable, but mi- 

croprocessor and memory technology has gone beyond the 
original planning for several of the standard boards. The 
first emulation bus specified 24 address and 16 data lines, 
without extensions. During the original emulation design it 
was assumed that a microprocessor system requiring even 
that many address lines would be several years away. The 
original 64300A internal analyzer monitored only 16 ad- 
dress lines, and the original 64151A memory controller 
handled only 20 address lines, Emulation memory sup- 
ported 128K bytes with 1K-byte resolution. Then the 68000 
microprocessor with a 16-megabyte addressing range and 
the 28001 microprocessor with an 8-megabyte segmented 
range appeared. A second-generation analyzer and memorv 
controller are now necessary. 

Internal Analysis 
A new internal analyzer, the 64302A, is designed to cover 

all 24 address lines. In addition to extended address, the 
analyzer has an expanded number of IMB (intermodule bus) 
functions. This enhances the cross-coupled measurement 
capability that is so important when designing complex 
16-bit systems with memory management or multiprocess- 
ing. A problem was encountered when tracing the data flow 
of 16-bit microprocessors. These processors can transfer 
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data either as a byte or as a word. When transferring a byte, it 
is not usually known whether the byte will appear as an 
upper or lower byte on the bus. The emulation bus provides 
word, lower-byte, and upper-byte status to the analyzer, 
that does not help the situation. To solve this problem, the 
64302A’s data inputs can function as two independent 
bytes. Measurements can be made by specifying the data 
redundantly in both bytes and specifying a byte transfer to 
set the trigger condition. 

Memory Control 
A new memory controller, the 64155A, works with the 

full %bit address bus. It supports up to one megabyte of 
emulation memory, and has two mapping resolutions: 256 
bytes and 4K bytes. It is used with the new memory boards 
that provide UP to 128K bytes of static RAM on a single 
board. The 64155A is also compatible with existing 
64152B, 64153% and 64154B static RAM boards. A sig- 
nificant portion of a user’s investment in emulation is in the 
emulation memory subsystem. Expanding for the 16-bit 
emulators introduced a new problem-implementing a 
dual-port memory scheme. New microprocessors use a very 
high percentage of their available bus bandwidth. There- 
fore, we implemented a new mechanism for the memory 
controller which pauses the emulation processor’s memory 
activity whenever the 64000 host processor accesses emula- 
tion memory. The new memory controller has a transparent 
dual-port mode, but the 8086188, Z8000, and 68000 
emulators need a level of performance that requires the 
pause mode. Of course, a user can select a real-time running 
option to ensure that these pauses do not disrupt the opera- 
tion of the target system. 

Emulator Transparency 
An important issue for emulator designers is transpar- 

ency-the ability of an emulator to perform in a target 
system exactly like a microprocessor. Transparency has 
four aspects: electrical, timing, resource, and functional. 
Electrical transparency encompasses factors such as input 
and output loading and Propagation delays. TYPicallYv an 
emulator uses a higher-speed microprocessor and LSTTL 
buffering. This combination closely approximates the mi- 
croprocessor manufacturer’s propagation specifications. is in memory along with the 
For emulators Of NMOS microprocessors, exact reproduc- 
tion of a processor’s loading characteristics was given a 
lower design priority. Our goal has been to use one LSTTL 
load per signal unless this becomes excessive. This Strategy 
has seemed appropriate since most NMOS microProcessor 
systems use TTL circuitry. 

Timing transparency is commonly a measure of an 
emulator’s ability to run at the maximum rated speed ofthe 
microProcessor. Therefore, the designer of an emulator 
must anticipate a processor’s fastest mature speed and de- 
sign to that performance. A second consideration is 
whether or not an emulator imposes 
time execution is important to users, 
states or other timing aberrations is 

processor resources or features 
design tradeoff. For example, a g 
the use of a certain address range nr 

re 
m 

a usp would not have to make if the actual 
sor were plugged into the user’s system. 
a1 transparency reflects the ability of an 

ecute instructions, perform bus activity, and 
respond to asynchronous inputs in precisely the same 
manner as the microprocessor. This area is HF”s first design 
priority and is usually the most difficult to achieve because 
microprocessors are largely undefined devices. Micro- 
processor vendors specify instruction sets, bus timing, and 
pin definitions, but rarely declare functional interactions. 
Knowledge of these interactions may not be necessary for a 
system designer, but an understanding of these functions 
can be the deciding factor as to whether an emulator does or 
does not work in the target system. 

The high level of complexity in these 16-bit processors 
caused us to rethink the approach we had beenusing for the 
&bit emulators. We had been maximizing resource 
transparency and keeping the user’s required level of 
knowledge about the details of the emulated processor to a 
minimum. To accomplish this, the 8-bit emulators have an 
alternate address space containing memory called 
background. User programs are executed from foreground 
memory until a breakpoint is encountered, then the , 

emulator moves into the background memory where it exe- 
cutes the background monitor. This monitor dumps the 
processor’s registers into memory and performs other 
duties. This monitor is totally resource transparent because 
it doesn’t occupy any oftheuser’saddressrange. Emulation 
software loads the background monitor into background 
memory and maintains proper operation. 

This approach is not as satisfactory for 16-bit micro- 
processors because functional transparency would be 
threatened by the increased complexity of such devices. For 
example, the 8086/88 and 68000 processors prefetch in- 
smctions, Multimode interaction Occurs between asyn- 
chronous inputs such as HALT and BERR on the 68000 
microprocessor and STOP and BUSREQ on the 28000 mi- 
croprocessor. The transition from foreground to 
background memory becomes more difficult. It was clear 
that the misplacement or rearrangement of one bus cycle 
while transitioning to background would invite trouble. 
Consequently, for 16-bit processors, the emulation monitor 

This approach would be unacceptable for an &bit 
emulator because it would affect resource transparency. 
That is, using 1K bytes of address space for an emulation 
monitor would be a major intrusion for an &bit 8049 
emulator because the 8049 microprocessor has a program 
space of only 2K bytes. The same emulation monitor does 
not intrude so overwhelmingly on the one-megabyte range 
of a 16-bit 8086 microprocessor and thus does not adversely 
affect resource transparency. This is particularly true in the 
64000 System, given that the monitor can be placed any- 
where in the user’s program space. 

For the new 16-bit emulators, the emulation monitor can 
be placed anywhere in the microprocessor’s address range. 
Exact placement is determined automatically by the 
emulator. As part of the integrated 64000 System, the emu- 
lation software accesses the linked symbol table to deter- 
mine the emulation monitor’s location. 

Q 

Q 

Resource transparency refers to restrictions on micro- 
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Flexibility f‘ 

Flexibility is another key issue. It is anticipated that the 
16-bit emulators will have to operate in conjunction with 
memory management ICs, operating systems, and other 
complex environments. This dictated a design approach 
that allows a user to customize the emulator to whatever 
hardware is used. One possibility was to use a background 
monitor that could be modified by users. This was dis- 
carded because the background monitor is usually a com- 
plex program. The complexity is caused by the peculiar 
boundary conditions that can occur during the transition 
from foreground to background. A pending software or 
hardware interrupt could require the background monitor 
to do gymnastics to preserve the pretransition environment 
and to unravel whatever activity occurred. 

The foreground emulation monitor avoids that complex 
interaction. It is distributed in source form along with the 
other emulation software. Users are encouraged to modify 
this program to accommodate specific requirements of the 
target system, even to pare it down in size when necessary. 
Numerous error checks and status messages can be trans- 
ferred to the 64000 System’s status line. These features 
make the monitor as friendly as possible for first-time users, 
but can be deleted to create a smaller monitor for experi- 
enced users. The foreground monitor also comes to the 
rescue when an emulator is used in a multitasking system 
where the focus is not on controlling the microprocessor, 
but on controlling the processes. Via the emulation 
monitor, the emulator can be linked to an operating system, 
allowing the emulator’s run and breakpoint features to acti- 

As another example, consider the need for performing 
both word and byte transfers. Since the fundamental ad- 
dressing mode is a byte address for these processors, the 
emulation monitor performs all memory transfers as byte 
transfers. However, it is common for emulator users to de- 
sign hardware that accepts only word accesses. Once again, 
by simply modifying the emulation monitor, address 
ranges can be specified for word transfers, and elsewhere, 
byte transfers can be used. 

Once the design decision to go with the foreground ap- 
proach was made, it became clear that a common emulation 
control board could accommodate all of the 64000’s 16-bit 
emulators. As a result, the 64271A board was designed. It 
contains interface circuitry to make the emulation pod sig- 
nals compatible with the emulation bus, creates a port 
through which the 64000 Station can program pod config- 
uration registers, provides a fast address mapper for buffer 
control, and transfers various control and status signals 
between the station and the pod. 

Special Considerations for Coprocessors 
Coprocessor support required some special hardware 

considerations for the emulator pods. The 8087, coproces- 
sor to the 8086, monitors instruction fetching and execu- 
tion. Usually, when accessing emulation memory re- 
sources, the emulator places the data bus into a high- 
impedance state. To allow coprocessors to monitor emula- 
tion memory activity, a special mode is required for the 
8086 emulator. As needed, the emulation memory cycles 
can be driven out on the microprocessor data pins. To avoid 

9 

1 vate and deactivate tasks. 

bus contention problems, short plug-jl leads are added to 
bring out mapper and emulation merdory ready signals for 
use in the target system. Another problem arose from the 
common practice of using special blocks of memory for 
pointers or interrupt vectors for the microprocessor and its 
coprocessor. Vectors can reside very close together in 
memory, which can restrict the use of emulation memory. 
To overcome this problem, all of the 64000’s 16-bit 
emulators can be set up to become “memory emulators” 
during coprocessor or other DMA-type cycles. During such 
times, the emulator generates emulation memory strobes 
from signals applied to the memory strobe pins of the inac- 
tive prodessor. 

One of the more subtle changes made in response to field 
inputs from users happened when redesigning the 64151A 
to become the 64155A memory control board. A standard 
feature of the memory controllers detects write cycles to 
address ranges designated to be ROM. Such ranges are 
write-protected when they are mapped to emulation mem- 
ory. But, regardless of whether emulation or user memory is 
specified, a breakpoint is generated when a write is per-. 
formed to ROM. Many 8-bit emulator users like to use these 
ROM areas for other purposes, such as a write-only IIO 
space. The new 64155A memory controller allows this; it 
can be configured to generate or not generate write-to-ROM 
breakpoints. 

Emulator Software Design 
The following discussion is restricted to a description of 

the software features that are additions to or changes 
from the first-generation emulators.’ Unaffected features 
are not discussed. Emulation features changed or added to 
handle 16-bit microprocessors include emulation session 
entry, configuration, general control, symbolic interface, 
command file execution and control, memory interface, UO 
interface, software breakpoint, and analysis. 

Emulation Session Entry 
There are two possible entry points to emulation, depend- 

ing upon what hardware modules are present in the devel- 
opment station’s card cage. If there is only one emulation 
card set (one emulator control board with pod, a memory 
controller board, and an optional 300 or 302 analysis 
board), then entry is directly from the development station 
via the emulate softkey. At this point the user has the 
following options: 

Begin a new emulation session and build a new emula- 
tion configuration command file 

m Enter emulation configuration with a previous emulation 
command file name to edit the options contained therein 
Enter run-time emulation directly (option continue) with a 
valid emulation command file specified 
Specify a user program absolute file to be loaded after 
entering run-time emulation (this can be done with any 
of the above options). 
If there are multiple module sets present in the station’s 

card cage (emulator sets, state analyzer sets, timing ana- 
lyzer sets), then entry is via the measurement system moni- 
tor which itself is entered from the development station with 
the command m e a s ~ y s .  The measurement system is de- 
scribed in the box on page 8. Softkey labels appear in the 
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measurement system display identifying the module and 
slot number of the control card or that module lea., 

croproqessor’s &dress space. All the map data is stored in 
the emulation command file so that it does not have to be . -  

em8086-4 or s t a t e d  for an 8086 microprocessor emulator 
control board in slot 4 and a state analyzer control board in 
slot 8). Selection of an emulator with an optional emulation 
command file name transfers control directly to run-time 
emulation if the file matches the current hardware config- 
uration. Otherwise, if the command file needs editing, or if 
none is specified and there is not a previous emulation 

er the 

reentered each time, and a previously entered map can be 
easily modified when editing an existing command file. 

As an optional feature for microprocessors with the abil- 
ity to separate address space, two methods exist for overlay- 
ing memory address space (where two or more address 
inputs will map to the same physical blocks of memory 
controlled by the memory-mapping hardware). The first is 
to specify explicitly in the memory-map command entry 
that segments of equal size map to the same physical mem- 
ory. The other is to “don’t care” upper address bits by 

a reduced value in response to the configuration 
“Number of significant address bits?” 

After completing configuration, the user initializes the 
necessary software and hardware and enters the run-time 

and answer entries, 
tion, which has a di . 

General Control (Mo 

the user’s application program, provides the control 
mechanism for the emulation system. As the user completes 
the development cycle of a softwarelhardware project, this 
program can be left out t 
integration and test. 

The emulated micro 
set, running in monitor ( 

rocessor program within emulatio 
ing, but not in the em 

oproces- under either of the running states the emulation system 
(e.g., 8089 coprocessor software polls the target microprocessor with an “are you 

there?” protocol. This is 
of a global control word, 

the con- lation monitor program 
time in- in the monitor loop, the 

query and performs th 
ay. The munication mechanism, the emulation software makes 
exibil- specific coded requests requiring the target processor’s ac- 

ity in hardware control of the microprocessor address bus. tion such as dumping register values, accessing user mem- 
The address space of the emulated processor can be par- ory or UO ports, or checking for s 
titioned into 32 segments (possibly disjoint and of var 
size) using block sizes of 4K or 256 bytes, Each segme be restricted to real-time Is  

5. Number of significant address bits (dependent upon 

6. Break on processor writes to ROM option selection. 
7. Memory-mapping session. 
8. Simulated UO address assignment, if desired, for dis- 

play, printer, keyboard, RS-232-CIV.24, andlor disc 

block size and processor address size). 

dation monitor 

nder special circumstances th 

t 

c 

C 
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monitor loop and allows the emulation sygbem to be n the 

a run command, real-time execution resumes. 
The emulation system control software is driven by HP’s 

directed-syntax command monitor. The diagram In Fig. 2 
roughly outlines the software architecture within the 
64000’s memory, which is separate from emulation mem- 
ory. The dynamic overlay area provides space for software 
needed to complete a user-issued command. Keeping the 
size of the dynamic overlays small reduces delay when 
accessing mass storage and makes available a large number 
3f software modules to service the extensive command set. 
rhus, major disc accesses occur only when loading, storing, 
or listing large user files, returning to configuration, or 
ending the emulation session, This architecture lets the 
user issue any command directly without having to request 
a certain interface first. The user is guided in command 
entry via directed-syntax softkeys, and at any point in the 
run-time monitor, all the possible commands are available. 
To simplify and guide command entry, the user is provided 
with the first keyword of each command on three levels of 
softkeys. The user can cycle through these levels by press- 
ing the softkey labeled ---ETC---. 

handshake protocol described above. When the w i issues 

Symbolic Interface 
The addition of rolling and paging functions for the dis- 

play mode makes the display of global and local symbols 
more flexible. Also, the symbolic memory references are 
now separated into prog, data or comm types. There are three 
new symbol types available: +(NUMBER), denoting a Pascal 
source line number, @(NAME), which gives the starting 
address of the named module, and the addition of lower- 
case identifiers to support HP’s C compilers. 

In the 8086/88 microprocessor family, the user can now 
enter addresses in two formats. The logical address format 
is the segment-offset format followed by Intel Corporation. 
This takes the form of a 16-bit segment followed by a colon, 
followed by a 16-bit offset. The other form, physical, is the 
Folded logical address from which a 20-bit address is de- 
rived. To enter a physical address, simply enter a single 
number of up to 20 bits. 

9 

Command File Executlon and Control 
A command file can be invoked within emulation by 

typing in the desired file name. Any valid emulation com- 
mand can be followed by a semicolon, which will act as an 
end-of-line character. This becomes the comment-field de- 
limiter, a very useful feature for command files used in 
testing situations. A command file for use in emulation is 

64000 Emulation Wait Comman 

Command Waiting CondiUon Beton, 

wait Any keystroke 

wait x 

Processing Next Command 

Any keystroke, or X number 
of seconds 

Any keystroke, or measure- 
ment to come complete 

wait measurement-complete 

Notes: 
I .  When operating in remote mode, the “wait for 

any keystroke” condition is not enabled. 
2. While under a wait condition, striking the reset key once 

will satisfy the “wait for any keystroke” condition and 
stop execution of a command file. 

logged (created) by the user’s completing the following steps: 
1. From the system monitor level, issuing the command 

2. Entering emulation 
3. Going through all the commands desired in the com- 

mand file 
4. Ending emulation, returning to the system monitor level 

and issuing the command log_commands off 
5. Editing the command file just created and removing the 

commands that led to the entry and exit of emulation 
6. Evoking the new command file from the emulation 

monitor. 
Command delays now allow the user more flexible use of 
command files (although these commands are also avail- 
able outside of command files). They allow the user to give 
the emulation system and target processor time to complete 
some condition or reach a given state before bringing in the 
next command. The user may issue these wait commands 
(see Table I) during a session to create a new command file. 

Memory Interface 

log-commands to (new command file name) 

Memory-related functions include loading and storing 

&mor9 :wrds :blocked : repat 1 t ively  P QCP?’US SHY5 
5725 

CiWO 1382-18 2881 1481 91EF 4072 3994 
BBBB 132-28 DSgS 94CE 516F 0840 8E58 
0eM 1322-30 0048 E 5 M  7538 4BF9 8455 
CiWO 1332-32 m50 

STATUS: 18086--Resct 

-display lmnory &art  thru Rborttl0.20.13Ben thr  
r o r d  
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Fig. 3. Typical memory display. 

- I 
Fig. 2. A rough outline of the run-time use offhe 64000 system 
memory. 
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short real numbers and 
ddEsddd for long real numbers 

address and can have any number of contiguous or discon- 
tiguous segments, The name of the last file loaded is re- 
corded so the symbolic interface software can access the 
global and local symbols associated with it. The presence of 
the emulation monitor program symbols is checked and 
addresses recorded if symbols are present. All target system 
memory (mapped to emulation or user resources) is ac- 
cessed by the emulation system software in variable block 
sizes from one to 250 bytes. This feature speeds up the load 
memory command, allowing it to handle large files quickly. 

The displaynist interface now allows complex list re- 
quests and remembers the last display format and list en- 
tered. The user can enter up to 16 memory list entries, each 
consisting of a single memory location or a memory range, 
when displaying or listing memory in either blocked or 
absolute format and in either bytes or words. This lets the 
user view or list an arbitrary set of locations or ranges 
anywhere in memory. If the list specifies more than one 
screenful of data, the roll or page keys can be pressed to 
scroll the desired segments of the list specification into 
view. The repetitive display option periodically updates 
the memory locations currently shown on the screen. 

The mnemonic memory displayllist format accepts either 
starting address or address range. Also, rolling and paging 
are more sophisticated. The ROLL UP and NEXT PAGE keys 
add to the current display starting at the next available 
address at the bottom of the display. An internal stack keeps 
track of several pages so that the ROLL DOWN and PREVious 
PAGE keys respond quickly and logically. When a ROLL 
DOWN or PREV PAGE key is pressed and the data is available, 
an algorithm is used to build back from the first address 
displayed. There are cases where ambiguous results occur, 
so the t and & keys rebuild the screen by adjusting the 
current first display address up or down by one byte and 
then doing the inverse assembly beginning at that new 
address. Inverse assembly for memory, register, and trace 
displayllist is handled by a tablsdriven inverse assembler. 

The modify memory command accepts byte or word mode, 
a single target location or a target range of locations, and a 
single hexadecimal value or a list of hexadecimal values. 
The modification value(s) are interpreted as specified, 
either as bytes or words (actual memory accesses are on a 
byte basis). For example, 

Three special symbols may appear in the real number 
display: NaN=not a number, +INF=positive infinity, and 
-INF=negative infinity. 

110 Interface 
A new facility offered in the latest emulationrelease is the 

ability to interrogate UO address space for those micro- 
processors with that feature. The UO interface handles up to 
16 bits of UO address, 

The displayflist i o p o r t  command works like its displayflist 
memory counterpart except that when the word or bytes 
mode is specified, accesses are made only in that mode. 
This lets the user control the accesses made to I/O port 
addresses. The displayllist interface accepts a display list of 
up to 16 entries, each entry being a single address or an 
address range, A continuous option does a repetitive up- 
date of all locations on the display. Rolling and paging 
work in the same manner as with the display memory 
interface. Format options include absolute (one entry per 
display line) or blocked (eight entries per display line). 

The modify io-port command is like its counterpart, mod- 
ify memory, but again the mode (word or byte) forces all 
accesses to be done by whichever mode is specified. 

Software Breakpoint 
The emulation system can perform an effective break on 

execution by using the modify software-breakpoint set (AD- 
DR) [ (ADDR),..] command where (ADDR) is the beginning of 
any valid instruction. Avalid address may take the form of a 
number, an expression, or a symbol. The display andlor list 
of the software breakpoints (Fig. 4) allows the user to view 
the entered breakpoints and their current status. As many as 
16 breakpoints are maintained in a table stored in the emu- 
lation command file, which is kept intact at the emulation 
session and is available when the session is resumed. 

Setting breakpoints, combined with a trace before 
SWBK_ENTRY command, provides a convenient tool for ' 

8 

F 

modify memory 1000 to 05 
modify memory word 2000 thru 3FFF to OFFFF 
modify memory byte START to O M ,  OEB, OEC 
modify memory 12FO thru 18FF to 0, 1, 2, 3, 4 

A new capability of the displaylmodify memory feature is 
the use of real numbers. Both short @%bit) and long (64-bit) 
real numbers are supported using the IEEE standard 
floating-point format. These formats are also used by the 
64000's compilers and assemblers. Short real numbers are 
displayed with six significant digits, and long real numbers 
are displayed with fifteen significant digits. All memory 
display options, such as multiple addresses or address 
ranges, are available in real mode, as are all such options for 
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Software brcsknoint table 

8888 27F7 
8888 26% 
8888 2x6 Pending 
me 2 x 0  Pending 



a 
5 
c *. (Fig. 4). The data from the breakpoint table is restored to the 

opermd, pr( 1. s 
f .  s 
3. us 
1. us 
2. us 
2. us 
2. us 

Fig. 5. (e) Display.of.interactive measurement specification, 
receivin (b) Trace 
&Splay status bits 
(in bine cfivity that 
w l d  n 

. .  
softwag analysis~SW33KiENTRY is a global symbol defined 
in the Iftdnitor pfogram. Thd dsta found at the breakpoint 

the breakpoint.teble. A special code 
microprocessor) replaces 

the data in a. progr n the program execution 
meaches$he sbecial code, abrdcintdthe emulation monitor 

program occurs. The processor is then running in the 
gram, and a message is displayed showing the 
r a m  counter address. Any displayed break- 

1 
i 

flect a change in status from pending to inactivated 

program and the program counter reflects the breakpoint 
address. Execution from the breakpoint in the program now 
can be continued by issuing a run or step command. 

A step command (to get the processor past the breakpoint 
address) followed by a modify software-breakpoint set 
(ADDR) command reactivates that breakpoint. A modify 
softwarehreakpoint set command reactivates all inactive 
breakpoints. If the special code is executed and the address 
of execution does not correspond to an entry in the table, the 
message Undef. software break trap is displayed. 
Analysis 

Analysis enhancements include the ability to participate 
in coordinated analysis via the measurement system, sup- 
port for a 48-channel analysis board, closer correspondence 
between real-time hardware capability and command op- 
tions, and extended ability to save traces. 

The most significant change is the ability to coordinate 
measurements with other analysis modules (timing, state, 
or other emulation analysis). There is now synchronous 
initiation of the participating modules, including starting 
of analysis and running of target microprocessors. Mea- 
surements can be specified that use emulation analysis not 
only to enable its internal trigger via an external signal, but 
also to trigger another module or receive an external trigger. 
This allows tracing of communication between coproces- 
sors. It also provides greater depth via sequential triggering 
and simultaneous timing and state analysis or the use of the 
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enable function for complex tri 
of two or more analyzers. 

trace can be displayed (Fig. These functions are selected within emulation configura- 
tion during the interactive measurement specification seg- 
ment (Fig. Sa). Then the specified function occurs 
whenever a measurement is executed, until the interaction 
specification is modified. Two new commands allow 
specification of traces or runs without execution and sub- 
sequent execution without repeated specification. 

The new 64302A 48-channel Emulation Analysis Board 
and the earlier @channel board are supported by the new 
software. The eight additional channels can be allocated as 
needed by the particular microprocessor to either address 
(up to a maximum of 24 bits) or data (up to a maximum of 16 
bits), or both (Fig. 5b). A related feature is the ability to 
specify the number of significant address bits and have the 
emulation analysis automatically ignore higher address 
bits. New display options include binary (Fig. 5b) and 
mnemonic status displays. 

Other changes include an improved trace command syn- 
tax that corresponds exactly to the hardware’s real-time 
triggering and storage capability. The combined resources 
of emulation analysis, software breakpoints, and command 
files allow application-specific nonreal-time analysis and 
enhance the system’s general flexibility. Trace specifica- 
tions and trace data can be stored in a trace file and loaded 
again later to reexamine the data or to reuse the specifica- 
tion. Also, entire traces can be listed to a file with a single 
command, rather than a series of partial listings. 

t 

i 

I 
I 

a 

High-level 
Develop i n g 

1 for the step command anzup to a i d  including 3 
the final instruction for the run until command. 

In trace specifications there is now a set of symbolic key- 
words to be used in place of the normal hexadecimal or bi- 
nary “don’t care” specification for naming status values, and 
a capability to build status expressions using the operator 
and with status keywords (or “don’t care” numbers). 
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Language Compilers for 
Microprocessor r, ms 

by Martin W. Smith and Joel D. Tesler 

HE TERM “UNIVERSAL,” when applied to a micro- 
processor development system, should apply to the T software provided with the system as well as to the 

hardware. That is, if a compiler for high-level language X is 
supported by the development system, and if the system 
provides hardware support for microprocessors A, B and C, 
then the compiler for language X should be able to generate 
code for microprocessors A, B and C. Conversely, if the 
development system provides hardware support for micro- 
processor A, then any high-level language compiler sup- 
ported by the system should be able to generate code for A, 

These requirements suggest a structure for the high-level 
language compilers supported by the 64000 Logic De- 
velopment System. This structure, shown in Fig. l ,  is simi- 
lar to a restaurant menu. It shows that compilers for lan- 
guages X and Y (Pascal and C in the diagram), are really just 
different entry points into a high-level language system. 
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The parts of the system are represented by the items on the 
menu. Thus, just as a customer desiring a good meal can pick 
from the menu “one appetizer, one main course, and one 
dessert,” so can a user of a 64000 Logic Development Sys- 
tem select a language from column A and a microprocessor 
from columns B and C to get relocatable code for that pro- 
cessor in column D. 

Using th is  type of structure has some important benefits 
for the user. First, if a new microprocessor begins to win 
acceptance in the marketplace, Pascal and C compilers for 
that processor can be created by providing one code 
generator and one set of tables (columns B and C) to the 
compiler system. This reduces the labor normally needed to 
build an entire compiler by a factor of three to six. Second, if 
a new language begins to see wide use in  the micro- 
processor environment, a compiler for that language can be 
brought up on the 64000 System by providing a pass 1 for 

I* 



F-l 

Pass 2 - 

Intermediate 

Fig. 1. The compiler structure in the 64000 Logic Development System. 

the language (column A). Again this takes much less labor 
compared to that needed to produce an entire compiler. 
Third, the user can look forward to better service for detect- 
ing and correcting compiler bugs. When a user of the 8086 
Pascal compiler reports a software bug, and that bug turns 
out to be caused by a problem in Pascal pass 1, then when 
the bug is corrected in the Pascal pass 1, it is corrected for all 
the supported microprocessors in column B. And if the bug 
turns out to be located in 8086 pass 2, then once corrected, it 
is corrected for all of the supported high-level languages. 
Compiler Languages 

At first glance, the languages C and Pasca may appear 
similar. Both are structured languages and contain similar 
looping constructs. Both have similar data types containing 
integers, reds, pointers, arrays, records or structures, and 
with the addition of the enum data type to C, scalars. Given 
the similarities between the two languages, the question 
may arise as to the reasons for supporting both languages on 
the 64000 System. 

There is a basic difference in philosophy between C and 
Pascal. C is generally more concise (and therefore at first 
glance more cryptic) than Pascal. C gives the programmer 
as much freedom as possible, and imposes few restrictions 
on the user. By contrast, Pascal protects the programmer 
hop  certain types of errors, resulting in limited freedom. 
&I example of this difference is illustrated by procedure 

4 1 s .  In Pascal procedures, the number and types of 
parameters must be declared explicitly. At every call, the 
arguments are checked, and if there is any incompatibility 
in either type or number, an error message is given. In C, no 
check is made. Note that in C it is much easier to make an 
error in parameter passing. However, variable numbers and 
types of parameters can be passed in C, which is impossible 
to do in Pascal. Of course, both the sending and receiving 
routines must conform to the same parameter passing con- 
vention, since there is no way of verifying the number and 
type of parameters that were passed to it. Failure to do this 
results in unmedictable behavior bv the momam. 

Another example of this difference in philosophy is ap- 
parent in the use of pointers and addresses. In Pascal, all 
pointers point into the heap, an area of memory specifically 
allocated for dynamic memory (i.e., NEW, DISPOSE, etc ...). 
This tends to prevent writing over random memory not 
intended for that purpose. In C, there is a specific operator 
for taking an address. Additionally, pointers and integers 
are assignment compatible. Therefore a C pointer may con. 
tain anything, a potentially dangerous but powerful tool. 

In Pascal, an integer and a set are two different constructs 
A set can contain any number of elements (subject to the 
limitations of the compiler) and the representation is not 
specified (at least not in  a manner that is transportable 
between one compiler and another). InC, logical operations 
can be done on any integer. This is useful for doing bit 
masking on integers. 

Pasca1/64000 has certain extensions that allow the user 
accesses to certain types of functions possible in C. For 
example, type changing enables the user to bypass some of 
the type checking normally done by Pascal. It can also be 
used to convert between integers and sets, thus allowing 
masking of integers. Another extension is the ADDR func- 
tibn, which gives the ability to take addresses. This allows 
PascaU64000 pointers to Doint anvwhere in memorv. not 
just the heap. Other features of C, s ich as variable paramete 
passing, are not available as extensions to PascaV64000. 

The following example illustrates the difference betwee 
the two languages. The C statement: 

c += a[ *w++ = getch( )] 

first calls a function getch, which returns a character. This 
character is then assigned to the location pointed at by w, 
after which w is then set to point to the next character 
(presumably w points into a buffer). The character is then 
looked up in an array a, and its value is added to c. To write 
the same statement in Pascal, the following would be neces- 
sary: 
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buffer[w] := getch; i/ 

c. rotate. 
Altlln@6 parameter pagsing differs between Pascal and 

C, and thus may not be automatically compatible between 
the two languages (depending on the specific target proces- 
sor for), a special compiler directive is available 
in the C compiler to guarantee compatibility with Pascal for 
a given procedure. While the use of option places 
certain restrictions on the user, such as the inability to have 
a variable number of parameters, it does allow both lan- 
guages to be linked together. Since assembly language can 
also be linked in, it is not at all difficult for a developed 
system to be made up of modules in all three languages. For 
example, assembly language can be used to specific 
microurocessor I/O instructions and for other code not DOS- 

w := w+1; 
c := c t a[ buffer[w] 1; 

The only difference is that here w is an integer instead of a 
pointer, and$he buffer must beespecified explicitly. 

The C statemcht is more co e, but sacrifices readabil- 
ityforthe personwhois notw in Note however* 

to look 

-- 

the program 
like the 

have been written in 

changes, &e,, = instead of := and ( ) after getch). 
I summarizes Some Of the major differences be- 

tween Pascal and C. Those items available as extensions in 
Pascd/64000 are indicated, 

p ropm (except for minor 

Pascal 

eak type checking Strong type checking 
Variable parameters Fixed parameters 
Logical operations on Sets 
integers 
Bodean operation Boolean variables 

tegers 

The complicated arithmetic expressions referred to in 
Table I for C include S U C ~  things as autoincrement and 
decrement, conditional assignment, exclusive OR, and log- 
ical shift [logical shift is also available in Pasca1/64000). On 
the other hand, Pasca1/64000 has the nonstandard feature 

&le in a high-level language. c might be used to Aite 
device drivers, and Pascal can be used for applications of 
those hivers. 
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